Контрольная работа №4 БНТУ высшая математика

Внимание, решены все варианты! Скоро добавим их все в магазин. Авторы: Н И Чепелев, А.В. Метельский, Т.Н. Чепелева, Е.А. Федосик, B.C. Марципкевич Математика: методическое пособие для студентов заочной формы обучения: Минск: БНТУ, 2011 Ч. 4 - 70 с. Настоящее методическое пособие предназначено для студентов второго курса заочной формы обучения. Работа содержит основные понятия из программы но теории вероятностей и математической статистики, типовые примеры решений задач и контрольные задания (30 вариантов).

Контрольная работа №4 вариант 27 Чепелев Метельский МСФ ФИТР

КОНТРОЛЬНАЯ РАБОТА № 4

 

27. Вероятность того, что наугад выбранный компьютер работает со сбоем, равна 0,2. Оператор включил два компьютера. Какова вероятность того, что: а) хотя бы один из них будет работать без сбоев; б) оба компьютера будут исправны.

57. Прибор может собираться из высококачественных деталей и из деталей обычного качества. Из высококачественных деталей собирается 40% общего количества приборов. Вероятности выхода из строя прибора в течение гарантийного срока, собранного из высококачественных деталей, равна 0,03; собранного из деталей обычного качества – 0,1. Прибор выдержал гарантийный срок. Какова вероятность того, что прибор собирался из обычных деталей?

87. В ходе аудиторской проверки компании аудитор случайным образом отбирает пять счетов. Найти вероятность того, что он обнаружит не более одного счета с ошибкой, если ошибки содержат в среднем 3% счетов.

В задачах 91-120 требуется для данной СВ Х:

1) составить закон распределения СВ;

2) найти математическое ожидание М(Х) и дисперсию D(X);

3) найти функцию распределения F(x).

 

117. Батарея состоит из 4 орудий. Вероятности попадания в цель при одном выстреле для 1, 2, 3 и 4 орудий соответственно равны 0,6; 0,7; 0,8; 0,75. СВ Х – количество попаданий при одном залпе батареи.

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:

1) определить значение параметра а;

2) найти функцию распределения F(x);

3) найти математическое ожидание М(Х) и дисперсию D(Х);

4) построить графики р(х) и F(x).

147.

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

 

№ задачи

а

 

 

 

 

177

3,0

2,1

5,5

6,0

2,5

 

 

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .

 

207. Даны отклонения диаметров валиков от номинала

 

Отклонение, мкм

0–5

5–10

10–15

15–20

20–25

частота mi

6

24

42

20

8

 

$12.00
$12.00

Контрольная работа №4 вариант 26 Чепелев Метельский МСФ ФИТР

КОНТРОЛЬНАЯ РАБОТА № 4
http://reshuzadachi.ru/node/214

26. Две фотомодели снимаются для журнала мод, первая – с вероятностью 0,9, вторая – с вероятностью 0,7. Какова вероятность того, что в следующем номере журнала появятся снимки: а) обеих девушек; б) только первой; в) хотя бы одной из них?

56. Деталь производится одним из трех автоматов. Производительность первого автомата в два раза больше производительности второго автомата, а производительность третьего автомата в полтора раза больше производительности второго автомата. Брак первого, второго и третьего автоматов составляет соответственно 1%, 2%. 4%. Какова вероятность выпуска стандартной детали?

86. При массовом производстве шестерен вероятность брака 0,001. Какова вероятность того, что из 500 шестерен не более трех окажутся бракованными?

В задачах 91-120 требуется для данной СВ Х:

1) составить закон распределения СВ;

2) найти математическое ожидание М(Х) и дисперсию D(X);

3) найти функцию распределения F(x).

 

116. Из  партии в 10 изделий, среди которых 3 бракованных, выбраны случайно 3 изделия. СВ Х – число бракованных изделий среди выбранных.

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:

1) определить значение параметра а;

2) найти функцию распределения F(x);

3) найти математическое ожидание М(Х) и дисперсию D(Х);

4) построить графики р(х) и F(x).

 

146.

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

 

№ задачи

а

 

 

 

 

176

3,2

1,5

4,0

5,5

2,3

 

 

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .

 

206. Даны температуры масла в двигателе при средних скоростях

Температура, t°C

40–42

42–44

44–46

46–48

48–50

частота mi

10

22

35

25

8

 

$12.00
$12.00

Контрольная работа №4 вариант 25 Чепелев Метельский МСФ ФИТР

КОНТРОЛЬНАЯ РАБОТА № 4
http://reshuzadachi.ru/node/214

25. Для студента второго курса вероятность решить правильно задачу № 1 из типового расчета равна 0,8, а задачу № 2 – 0,7. Какова вероятность того, что: а) студент правильно решит обе задачи; б) решит неправильно хотя бы одну из задач; в) решит верно только одну из задач?

55. В торговую сеть поступают однотипные изделия, выпущенные тремя фабриками. Первая фабрика выпускает 30% общего количества изделий, вторая – 50%, третья – 20%. Продукция первой фабрики содержит 0,5% брака, второй – 2%, третьей – 1%. Какова вероятность того, что купленное изделие не будет бракованным?

85. В цехе 80 станков одинаковой мощности, работающих независимо друг от друга в одинаковом режиме, при котором их привод оказывается включенным в течение 0,8 всего рабочего времени. Какова вероятность того, что в произвольно взятый момент времени окажутся включенными от 60 до 70 станков?

В задачах 91-120 требуется для данной СВ Х:

1) составить закон распределения СВ;

2) найти математическое ожидание М(Х) и дисперсию D(X);

3) найти функцию распределения F(x).

 

115. Два стрелка делают независимо друг от друга по два выстрела по мишени. Вероятность попадания в мишень для первого стрелка равна 0,6; для второго – 0,8. СВ Х – число попаданий в мишень.

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:

1) определить значение параметра а;

2) найти функцию распределения F(x);

3) найти математическое ожидание М(Х) и дисперсию D(Х);

4) построить графики р(х) и F(x).

145.

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

 

№ задачи

а

 

 

 

 

175

1,5

2,0

1,5

2,5

1,5

 

 

 

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .

 

205. Дана трудоемкость операции

трудоемкость, мин.

8–10

10–12

12–14

14–16

16–18

частота mi

8

15

54

16

7

 

$12.00
$12.00
RSS-материал