Контрольная работа №4 вариант 26 Чепелев Метельский МСФ ФИТР
КОНТРОЛЬНАЯ РАБОТА № 4
http://reshuzadachi.ru/node/214
26. Две фотомодели снимаются для журнала мод, первая – с вероятностью 0,9, вторая – с вероятностью 0,7. Какова вероятность того, что в следующем номере журнала появятся снимки: а) обеих девушек; б) только первой; в) хотя бы одной из них?
56. Деталь производится одним из трех автоматов. Производительность первого автомата в два раза больше производительности второго автомата, а производительность третьего автомата в полтора раза больше производительности второго автомата. Брак первого, второго и третьего автоматов составляет соответственно 1%, 2%. 4%. Какова вероятность выпуска стандартной детали?
86. При массовом производстве шестерен вероятность брака 0,001. Какова вероятность того, что из 500 шестерен не более трех окажутся бракованными?
В задачах 91-120 требуется для данной СВ Х:
1) составить закон распределения СВ;
2) найти математическое ожидание М(Х) и дисперсию D(X);
3) найти функцию распределения F(x).
116. Из партии в 10 изделий, среди которых 3 бракованных, выбраны случайно 3 изделия. СВ Х – число бракованных изделий среди выбранных.
В задачах 121 – 150 дана плотность распределения вероятности р(х).
Требуется:
1) определить значение параметра а;
2) найти функцию распределения F(x);
3) найти математическое ожидание М(Х) и дисперсию D(Х);
4) построить графики р(х) и F(x).
146.
В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .
Требуется:
1) записать , ;
2) найти ;
3) найти .
№ задачи |
а |
|
|
|
|
176 |
3,2 |
1,5 |
4,0 |
5,5 |
2,3 |
В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.
Требуется:
1)построить полигон и гистограмму частостей (относительных частот) СВ Х;
2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;
3) вычислить выборочную среднюю и исправленное среднее квадратическое отклонение s;
4) записать гипотетичную функцию распределения и плотность распределения;
5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;
6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .
206. Даны температуры масла в двигателе при средних скоростях
Температура, t°C |
40–42 |
42–44 |
44–46 |
46–48 |
48–50 |
частота mi |
10 |
22 |
35 |
25 |
8 |
- 1363 просмотра