КОНТРОЛЬНАЯ РАБОТА № 4
http://reshuzadachi.ru/node/214
КОНТРОЛЬНАЯ РАБОТА № 4
17. На фирме 550 работников, 380 из них имеют высшее образование, а 412 – среднее специальное образование; у 357 работников – высшее и среднее специальное образование. Чему равна вероятность того, что случайно выбранный работник имеет высшее или среднее образование или то и другое?
47. Среди студентов факультета – 35% составляют первокурсники, 30% студентов учатся на втором курсе, на 3–м и 4–м курсах их соответственно 20% и 15%. Среди студентов первого курса сдали сессию на отлично 3%, среди второкурсников – 4,5%, среди третьекурсников – 7%, а среди студентов 4 курса – 10%. Наудачу вызванный студент оказался отличником. Какова вероятность того, что он учится на третьем курсе?
77. Вероятность отказа прибора при испытании равна 0,15. Какова вероятность того, что из 10 приборов при испытании откажут не более 2 из них?
В задачах 91-120 требуется для данной СВ Х:
1) составить закон распределения СВ;
2) найти математическое ожидание М(Х) и дисперсию D(X);
3) найти функцию распределения F(x).
107. Устройство состоит из трех блоков, которые выходят из строя за время Т с вероятностью 0,1. СВ X – количество блоков, которые вышли из строя за время Т.
В задачах 121 – 150 дана плотность распределения вероятности р(х).
Требуется:
1) определить значение параметра а;
2) найти функцию распределения F(x);
3) найти математическое ожидание М(Х) и дисперсию D(Х);
4) построить графики р(х) и F(x).
В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .
Требуется:
1) записать , ;
2) найти ;
3) найти .
№ задачи
|
а
|
|
|
|
|
167
|
7,2
|
3,5
|
4,1
|
10,8
|
5,5
|
В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.
Требуется:
1)построить полигон и гистограмму частостей (относительных частот) СВ Х;
2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;
3) вычислить выборочную среднюю и исправленное среднее квадратическое отклонение s;
4) записать гипотетичную функцию распределения и плотность распределения;
5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;
6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .
197. Даны результаты исследования грануляции партии порошка (в мкм):
xi
грануляция
(в мкм)
|
0–40
|
40–80
|
80–120
|
120–160
|
160–200
|
частота mi
|
7
|
23
|
35
|
26
|
9
|