Контрольная работа №4 БНТУ высшая математика

Внимание, решены все варианты! Скоро добавим их все в магазин. Авторы: Н И Чепелев, А.В. Метельский, Т.Н. Чепелева, Е.А. Федосик, B.C. Марципкевич Математика: методическое пособие для студентов заочной формы обучения: Минск: БНТУ, 2011 Ч. 4 - 70 с. Настоящее методическое пособие предназначено для студентов второго курса заочной формы обучения. Работа содержит основные понятия из программы но теории вероятностей и математической статистики, типовые примеры решений задач и контрольные задания (30 вариантов).

Контрольная работа №4 вариант 12 Чепелев Метельский МСФ ФИТР

КОНТРОЛЬНАЯ РАБОТА № 4
 
 
12. В течение года три фирмы имеют возможность обанкротиться независимо друг от друга соответственно с вероятностями 0,02; 0,05; 0,04. Какова вероятность того, что в конце года все фирмы будут функционировать?
 
42. Изделие проверяется на стандартность одним из двух контролеров. Первый контролер проверяет 55% общего количества изделий, второй – 45%. Вероятность того, что стандартное изделие будет признано стандартным первым контролером, равна 0,9; а вторым – 0,85. Стандартное изделие при проверке признано стандартным. Найти вероятность того, что изделие проверял второй контролер.
 
72. Телефонная станция обслуживает 600 абонентов. Вероятность звонка абонента в течение часа равна 0,005. Какова вероятность того, что в течение часа поступят звонки не более, чем от трех абонентов?
В задачах 91-120 требуется для данной СВ Х:
1) составить закон распределения СВ;
2) найти математическое ожидание М(Х) и дисперсию D(X);
3) найти функцию распределения F(x).
 
102. Баскетболист делает три броска в кольцо. Вероятности попадания в кольцо при первом, втором и третьем броске соответственно равны 0,5; 0,6; 0,7. СВ X – количество попаданий в кольцо.
 
В задачах 121 – 150 дана плотность распределения вероятности р(х).
Требуется:
1) определить значение параметра а;
2) найти функцию распределения F(x);
3) найти математическое ожидание М(Х) и дисперсию D(Х);
4) построить графики р(х) и F(x).
В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .
Требуется:
1) записать , ;
2) найти ;
3) найти .
В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.
Требуется:
1)построить полигон и гистограмму частостей (относительных частот) СВ Х;
2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;
3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;
4) записать гипотетичную функцию распределения и плотность распределения;
5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;
6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .
 
192. Даны квартальные данные о среднесуточном пробеге 100 автомобилей (в км):

xi среднесуточный
пробег

120–140

140–160

160–180

180–200

200–220

частота mi

9

21

40

18

12

 

$12.00
$12.00

Контрольная работа №4 вариант 7 Чепелев Метельский МСФ ФИТР

КОНТРОЛЬНАЯ РАБОТА № 4

 

7. В мастерской работают два мотора независимо друг от друга. Вероятность того, что в течение смены первый мотор не потребует внимания мастера равно 0,85, а для второго мотора эта вероятность равна 0,7. Найти вероятность того, что в течение смены только один мотор потребует внимания мастера.

37. Прибор, установленный на борту самолета, может работать в двух режимах: в условиях нормального крейсерского полета и в условиях перегрузки при взлете и посадке. Крейсерский режим осуществляется в 80 % всего времени полета, режим перегрузки – в 20 %. Вероятность выхода прибора из строя за время полета в нормальном режиме равна 0,1, в условиях перегрузки – 0,4. Найти вероятность отказа прибора за время полета.

67. При передаче сообщения вероятность искажения одного знака равна 0,2. Какова вероятность того, что сообщение из 6 символов содержит не более одного искаженного символа.

В задачах 91-120 требуется для данной СВ Х:

1) составить закон распределения СВ;

2) найти математическое ожидание М(Х) и дисперсию D(X);

3) найти функцию распределения F(x).

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:

1) определить значение параметра а;

2) найти функцию распределения F(x);

3) найти математическое ожидание М(Х) и дисперсию D(Х);

4) построить графики р(х) и F(x).

 

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .

 

187. С автомата обрабатывающего втулки диаметра d = 40+0,2 мм взята выработка изделий объемом 100. Результаты измерения диаметров втулок приведены в таблице:

xi

диаметр

(в мм)

40,00–40,04

40,04–40,08

40,08–40,12

40,12–40,16

40,16–40,20

частота mi

8

19

44

20

9

 

 

$12.00
$12.00

Контрольная работа №4 вариант 11 Чепелев Метельский МСФ ФИТР

Авторы:

Н И Чепелев, А.В. Метельский, Т.Н. Чепелева, Е.А. Федосик, B.C. Марцинкевич

Математика: методическое пособие для студентов заочной формы обучения:  Минск: БНТУ, 2011 Ч. 4 - 70 с.

Контрольная 4 вариант 11

задачи 11 41 71 101 131 161 191

 

11.          В контейнере 17 изделий, из них 10 изделий первого сорта, 4 изделия – 2–ого сорта и 3 изделия – 3–ого сорта. Рабочий случайным образом берет 6 изделий. Какова вероятность того, что среди взятых изделий первого сорта окажется 3 изделия, второго – 2 изделия, третьего – 1 изделие?

41.          С первого станка на сборку поступает 30%, со второго – 40%, с третьего – 30% общего количества деталей. Среди деталей, изготовленных на первом станке, имеется 2% брака, на втором – 3%, на третьем – 1% брака. Найти вероятность того, что поступившая на сборку деталь стандартная.

71.          По данным отдела технического контроля на 100 металлических брусков, заготовленных для обработки, приходится 30 с зазубринами. Какова вероятность того, что из семи случайно взятых брусков не более двух окажутся с дефектом?

101.       Установлены три независимо работающих сигнализатора, которые срабатывают при пожаре с вероятностями 0,8; 0,7; 0,9. СВ X – количество сигнализаторов, сработавших при пожаре.

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:        1) определить значение параметра а;

                2) найти функцию распределения F(x);

                3) найти математическое ожидание М(Х) и дисперсию D(Х);

                4) построить графики р(х) и F(x).

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением  .

Требуется:

1) записать  ,  ;

2) найти  ;

3) найти  .

№ зада-чи         а            

161         6,2          4,3          5             10           6,4

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сде- лать предварительный выбор закона распределения;

3) вычислить выборочную среднюю   и исправленное среднее квадратическое    отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности  ;

6) найти теоретические частоты нормального закона распределения и проверить              гипотезу о нормальном распределении СВ с помощью критерия Пирсона при           уровне значимости  .

191. Даны сведения о расходе воды, используемой цехом для технических нужд в течение 100 дней (в куб.м.):

xi расход

(в м3)   8–12      12–16    16–20    20–24    24–28

частота mi          7             25           36           22           10

$12.00
$12.00
RSS-материал