Контрольная работа №4 вариант 6 Яблонская 2009

186. Игра проводится до выигрыша одним из двух игроков двух партий подряд. Вероятность выигрыша партии первым игроком равна 0,6, вторым – 0,4 (ничьи исключены). Найти вероятность того, что а) игра закончится после двух партий; б) игра закончится до четырех партий.

196. Аппаратура в 80 % случаев работает в нормальном режиме и в 20 % случаев – в аварийном. Вероятность сбоя в нормальном режиме работы (за некоторое время Т) равна 0,05; в аварийном – 0,5. Найти вероятность сбоя аппаратуры (за время Т).

206. Вероятность попадания в цель при одном выстреле равна 0,7. Найти вероятность наивероятнейшего числа попаданий при пяти выстрелах.

Задания 211220. Составить закон распределения указанной дискретной случайной величины (СВ) и вычислить ее числовые характеристики: математическое ожидание, дисперсию и среднее квадратичное отклонение.

 

216. В партии из восьми деталей шесть стандартных. Наугад взяты две детали. СВ Х – число стандартных деталей среди выбранных.

Задания 221–230. Задана непрерывная СВ Х своей функцией распределения F(x). Требуется:

 

1) определить коэффициент А;

2) найти плотность распределения вероятностей f(x);

3) вычислить математическое ожидание СВ Х;

4) определить вероятность того, что Х примет значение из интервала (a,b).

 

236. Среднее квадратичное отклонение случайной величины, распределенной по нормальному закону, равно 2 см, а математическое ожидание равно 16 см. Найти границы, в которых с вероятностью 0,95 следует ожидать значение случайной величины.

 

Задания 241–250. По результатам N измерений случайной величины, имеющей нормальное распределение, с дисперсией D, получена оценка для математического ожидания .  Построить 95 %-й доверительный интервал для математического ожидания этой случайной величины.

 

 

№ задания

N

 

D

 

$10.00
$10.00

Контрольная работа №4 вариант 5 Яблонская 2009

185. Издательство отправляет газеты в три почтовых отделения. Вероятность своевременной доставки газет в первое отделение равна 0,9, во второе – 0,95, в третье – 0,8. Найти вероятность того, что а) два отделения получат газеты вовремя, а одно с опозданием; б) хотя бы одно отделение получит газеты с опозданием.

195. Среди поступающих на сборку деталей с первого станка 0,1 % бракованных, со второго – 0,2 %, с третьего – 0,25 %, с четвертого – 0,5 %. Производительности их относятся как 4:3:2:1 соответственно. Взятая наудачу деталь оказалась стандартной. Найти вероятность того, что она изготовлена на первом станке.

 

205. Вероятность того, что прибор потребует дополнительной регулировки 0,45. Какова вероятность того, что из 500 приборов большая часть не потребует дополнительной регулировки.

 

Задания 211220. Составить закон распределения указанной дискретной случайной величины (СВ) и вычислить ее числовые характеристики: математическое ожидание, дисперсию и среднее квадратичное отклонение.

 

215. В урне имеется четыре шара с номерами от 1 до 4. Одновременно извлекли два шара. СВ Х – сумма номеров шаров.

Задания 221–230. Задана непрерывная СВ Х своей функцией распределения F(x). Требуется:

 

1) определить коэффициент А;

2) найти плотность распределения вероятностей f(x);

3) вычислить математическое ожидание СВ Х;

4) определить вероятность того, что Х примет значение из интервала (a,b).

 

235. Автомат изготавливает подшипники, которые считаются годными, если отклонение Х от проектного размера по модулю не превышает 0,77 мм. Каково наиболее вероятное число годных подшипников из 100, если случайная величина Х распределена нормально с параметром σ = 0,4 мм?

 

Задания 241–250. По результатам N измерений случайной величины, имеющей нормальное распределение, с дисперсией D, получена оценка для математического ожидания .  Построить 95 %-й доверительный интервал для математического ожидания этой случайной величины.

 

 

$10.00
$10.00

Контрольная работа №4 вариант 4 Яблонская 2009

184. Для одной бригады вероятность выполнения нормы равна 0,8, для другой – 0,9. Найти вероятность того, что  а) обе бригады выполнят норму; б) хотя бы одна бригада  выполнит норму.

194. Рабочий обслуживает три станка, на которых обрабатываются однотипные детали. Вероятность брака для первого станка равна 0,02, для второго – 0,04, для третьего – 0,03. Обработанные детали складываются в один ящик. Производительность первого станка в три раза больше, чем второго, а третьего – в два раза меньше, чем второго. Определить вероятность того, что взятая наудачу деталь будет бракованной.

204. Рабочий обслуживает шесть станков. Вероятность того, что станок потребует внимания рабочего в течение часа, равна 0,2. Найти вероятность того, что в течение часа этих требований будет не больше трех.

Задания 211220. Составить закон распределения указанной дискретной случайной величины (СВ) и вычислить ее числовые характеристики: математическое ожидание, дисперсию и среднее квадратичное отклонение.

 

214. Вероятность успешной сдачи первого экзамена для данного студента равна 0,9, второго экзамена – 0,6, третьего – 0,8. СВ Х – число сданных экзаменов.

Задания 221–230. Задана непрерывная СВ Х своей функцией распределения F(x). Требуется:

 

1) определить коэффициент А;

2) найти плотность распределения вероятностей f(x);

3) вычислить математическое ожидание СВ Х;

4) определить вероятность того, что Х примет значение из интервала (a,b).

234. При измерении детали получаются случайные ошибки, подчиненные нормальному закону с параметром σ = 10 мм. Найти вероятность того, что измерение произведено с ошибкой, не превосходящей 15 мм.

 

Задания 241–250. По результатам N измерений случайной величины, имеющей нормальное распределение, с дисперсией D, получена оценка для математического ожидания .  Построить 95 %-й доверительный интервал для математического ожидания этой случайной величины.

 

 

$10.00
$10.00
RSS-материал