Яблонский Д15-01 вариант 01 динамика

Яблонский Д15-01 вариант 01 динамика

Задание Д.15. Применение принципа возможных перемещений к определению реакций опор составной конструкции
Применяя принцип возможных перемещений, определить реакции опор составной конструкции.
Схемы конструкций показаны на рис. 176—178, а необходимые для решения данные приведены в табл. 51. На рисунках все размеры указаны в метрах.

$1.50
$1.50

Бесплатная покупка

Тестовый товар

$0.01
$0.01

Контрольная работа №4 вариант 10 Яблонская 2009

190. Прибор комплектуется деталями трех типов. Вероятность того, что поступающие на сборку детали будут высшего сорта, для первого типа равна 0,9, для второго типа – 0,7; для третьего типа – 0,8. Найти вероятность того, что среди деталей прибора будет а) две высшего сорта; б) не менее двух высшего сорта.

200. Станок третью часть своего времени обрабатывает детали типа А, остальную часть детали типа Б. При обработке детали типа А он стоит 10 % времени, а детали типа Б – 5 %. Какова вероятность застать станок стоящим?

 

210. По каналу связи передается 1000 знаков. Каждый знак может быть искажен независимо от остальных с вероятностью 0,005. Найти вероятность того, что будет искажено не более трех знаков.

 

Задания 211220. Составить закон распределения указанной дискретной случайной величины (СВ) и вычислить ее числовые характеристики: математическое ожидание, дисперсию и среднее квадратичное отклонение.

220. При установившемся технологическом процессе предприятие выпускает 4/5 своих изделий первым сортом и 1/5 вторым сортом. СВ Х – число изделий первого сорта из взятых наугад трех.

 

Задания 221–230. Задана непрерывная СВ Х своей функцией распределения F(x). Требуется:

 

1) определить коэффициент А;

2) найти плотность распределения вероятностей f(x);

3) вычислить математическое ожидание СВ Х;

4) определить вероятность того, что Х примет значение из интервала (a,b).

240. Диаметр втулок, изготовленных на заводе, можно считать нормально распределенной случайной величиной с математическим ожиданием  2,5 см и среднеквадратичным отклонением 0,01 см. В каких границах можно гарантировать величину диаметра втулки, если за вероятность практической достоверности принимается 0,9973?

Задания 241–250. По результатам N измерений случайной величины, имеющей нормальное распределение, с дисперсией D, получена оценка для математического ожидания .  Построить 95 %-й доверительный интервал для математического ожидания этой случайной величины.

 

 

№ задания

N

 

D

 

$10.00
$10.00
RSS-материал