Контрольная работа №4 вариант 7 Чепелев Метельский МСФ ФИТР
КОНТРОЛЬНАЯ РАБОТА № 4
7. В мастерской работают два мотора независимо друг от друга. Вероятность того, что в течение смены первый мотор не потребует внимания мастера равно 0,85, а для второго мотора эта вероятность равна 0,7. Найти вероятность того, что в течение смены только один мотор потребует внимания мастера.
37. Прибор, установленный на борту самолета, может работать в двух режимах: в условиях нормального крейсерского полета и в условиях перегрузки при взлете и посадке. Крейсерский режим осуществляется в 80 % всего времени полета, режим перегрузки – в 20 %. Вероятность выхода прибора из строя за время полета в нормальном режиме равна 0,1, в условиях перегрузки – 0,4. Найти вероятность отказа прибора за время полета.
67. При передаче сообщения вероятность искажения одного знака равна 0,2. Какова вероятность того, что сообщение из 6 символов содержит не более одного искаженного символа.
В задачах 91-120 требуется для данной СВ Х:
1) составить закон распределения СВ;
2) найти математическое ожидание М(Х) и дисперсию D(X);
3) найти функцию распределения F(x).
В задачах 121 – 150 дана плотность распределения вероятности р(х).
Требуется:
1) определить значение параметра а;
2) найти функцию распределения F(x);
3) найти математическое ожидание М(Х) и дисперсию D(Х);
4) построить графики р(х) и F(x).
В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .
Требуется:
1) записать , ;
2) найти ;
3) найти .
В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.
Требуется:
1)построить полигон и гистограмму частостей (относительных частот) СВ Х;
2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;
3) вычислить выборочную среднюю и исправленное среднее квадратическое отклонение s;
4) записать гипотетичную функцию распределения и плотность распределения;
5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;
6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .
187. С автомата обрабатывающего втулки диаметра d = 40+0,2 мм взята выработка изделий объемом 100. Результаты измерения диаметров втулок приведены в таблице:
xi диаметр (в мм) |
40,00–40,04 |
40,04–40,08 |
40,08–40,12 |
40,12–40,16 |
40,16–40,20 |
частота mi |
8 |
19 |
44 |
20 |
9 |
- 924 просмотра