Тарг 1989 Динамика д6 вар 01

Задача Д6
Тарг С.М. 1989 г
Динамика Д6-01
вариант 01
рисунок 0 условие 1  http://reshuzadachi.ru/node/1371
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней  = 0,3 м, 0,1 м и радиусом инерции относительно оси вращения р3 = 0,2 м, блока 4 радиуса
Ra = 0,2 м и катка (или подвижного блока) 5 (рис. Д6.0 — Д6.9, табл. Д6); тело 5 считать сплошным однородным цилиндром, а массу блока 4 — равномерно распределенной по ободу. Коэффициент трения грузов о плоскость  0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.
Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).
Определить значение искомой величины в тот момент времени, когда перемещение s станет равным Si = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: скорости грузов 1,2 и центра масс тела 5 соответственно— угловые скорости тел 3 и 4.
Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 2), катятся по плоскостям без скольжения. На всех рисунках не изображать груз 2, если  0; остальные тела должны изображаться и тогда, когда их масса равна нулю.

$1.25
$1.25

Контрольная работа №4 вариант 30 Чепелев Метельский МСФ ФИТР

КОНТРОЛЬНАЯ РАБОТА № 4
http://reshuzadachi.ru/node/214

30. Два баскетболиста делают по одному броску мячом по корзине. Для первого спортсмена вероятность попадания равна 0,7, для второго – 0,9. Какова вероятность того, что в корзину попадут: а) оба игрока; б) хотя бы один из них; в) попадет только первый спортсмен?

60. Две из трех независимо работающих ламп отказали. Найти вероятность того, что отказали первая и третья лампы, если вероятности отказа первой, второй и третьей ламп соответственно равны 0,1; 0,3; 0,4.

90. При передаче текстовой информации слова кодируются в символы. Вероятность искажения каждого символа при передаче равна 0,009. При искажении двух и более символов слово не поддается дешифровке. Найти вероятность того, что слово, содержащее 10 символов, будет принято правильно.

В задачах 91-120 требуется для данной СВ Х:

1) составить закон распределения СВ;

2) найти математическое ожидание М(Х) и дисперсию D(X);

3) найти функцию распределения F(x).

120. В пятиблочном радиоприемнике (все блоки различные) перегорел один блок. Для устранения неисправности наудачу взятый блок заменяется исправным блоком, после чего проверяется работа приемника. СВ Х – число замененных блоков.

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:

1) определить значение параметра а;

2) найти функцию распределения F(x);

3) найти математическое ожидание М(Х) и дисперсию D(Х);

4) построить графики р(х) и F(x).

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

 

№ задачи

а

 

 

 

 

180

4,3

2,7

2,3

4,9

4,1

 

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .

 

 

210. Даны результаты стойкости 100 сверл

Стойкость, ч.

17,5–22,5

22,5–27,5

27,5–32,5

32,5–37,5

37,5–42,5

частота mi

7

21

45

21

6

 

$12.00
$12.00

Контрольная работа №4 вариант 29 Чепелев Метельский МСФ ФИТР

КОНТРОЛЬНАЯ РАБОТА № 4
http://reshuzadachi.ru/node/214

29. Автомеханик находит неисправность генератора автомобиля с вероятностью 0,8, карбюратора – 0,9. Какова вероятность того, что при очередной поломке автомобиля: а) он обнаружит хотя бы одну из поломок; б) не обнаружит неисправностей генератора и карбюратора?

59. Партия микросхем содержит 10% брака. Проверка микросхем такова, что с вероятностью 0,98 обнаруживается дефект (если он есть) и с вероятностью 0,03 стандартная микросхема признается бракованной. Какова вероятность того, что на самом деле микросхема стандартна?

89. Каждое из 8 предприятий отрасли выполняет месячный план с вероятностью 0,9. Найти вероятность того, что месячный план выполняет не менее шести предприятий.

В задачах 91-120 требуется для данной СВ Х:

1) составить закон распределения СВ;

2) найти математическое ожидание М(Х) и дисперсию D(X);

3) найти функцию распределения F(x).

119. Рабочий обслуживает 4 станка. Вероятности того, что в течение часа 1, 2, 3 и 4 станки потребуют внимания рабочего соответственно равны 0,2; 0,1; 0,2; 0,3. СВ Х – число станков, потребовавших внимания рабочего.

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:

1) определить значение параметра а;

2) найти функцию распределения F(x);

3) найти математическое ожидание М(Х) и дисперсию D(Х);

4) построить графики р(х) и F(x).

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

 

№ задачи

а

 

 

 

 

179

1,4

3,1

2,6

3,8

2,7

 

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .

 

209. Даны результаты испытания стойкости фрез

Стойкость, ч.

22,5–27,5

27,5–32,5

32,5–37,5

37,5–42,5

42,5–47,5

частота mi

6

21

44

22

7

 

$12.00
$12.00
RSS-материал