Тарг 1989 Динамика д5 вар 55

Задача Д5
Тарг С.М. 1989 г
Динамика Д5-55
вариант 55
рисунок 5 условие 5  http://reshuzadachi.ru/node/1371
Однородная горизонтальная платформа (круглая радиуса R  прямоугольная со сторонами R и 2R, где R= 1,2 м) массой 24 кг вращается с угловой скоростью со0 = 10 с-1 вокруг вертикальной оси z, отстоящей от центра масс С платформы на расстоянии ОС = Ь (рис. Д5.0 — Д5.9, табл. Д5); размеры для всех прямоугольных платформ показаны на рис. Д5.0а (вид сверху).
В момент времени to — 0 по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой  8 кг по закону s = AD = F(t), где s выражено в метрах, t — в секундах.
Одновременно на платформы начинает действовать пара сил с моментом М (задан в ньютонометрах; при М<0 его направление противоположно показанному на рисунках).
Определить, пренебрегая массой вала, зависимость (f), т. е. угловую скорость платформы, как функцию времени.
На всех рисунках груз D показан в положении, при котором s>0 (когда s<0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось г на заданном расстоянии ОС = b от центра С.
Указания. Задача Д5 — на применение теоремы об изменении кинетического момента системы. При применении теоремы к системе, состоящей из платформы и груза, кинетический момент Кг системы относительно оси г определяется как сумма моментов платформы н груза. При этом следует учесть, что абсолютная скорость груза складывается из относительной уоти н переносной опер скоростей, т. е. v = v0тн + vпер

$1.25
$1.25

Тарг 1989 Динамика д5 вар 54

Задача Д5
Тарг С.М. 1989 г
Динамика Д5-54
вариант 54
рисунок 5 условие 4  http://reshuzadachi.ru/node/1371
Однородная горизонтальная платформа (круглая радиуса R  прямоугольная со сторонами R и 2R, где R= 1,2 м) массой 24 кг вращается с угловой скоростью со0 = 10 с-1 вокруг вертикальной оси z, отстоящей от центра масс С платформы на расстоянии ОС = Ь (рис. Д5.0 — Д5.9, табл. Д5); размеры для всех прямоугольных платформ показаны на рис. Д5.0а (вид сверху).
В момент времени to — 0 по желобу платформы начинает двигаться (под действием внутренних сил) груз D массой  8 кг по закону s = AD = F(t), где s выражено в метрах, t — в секундах.
Одновременно на платформы начинает действовать пара сил с моментом М (задан в ньютонометрах; при М<0 его направление противоположно показанному на рисунках).
Определить, пренебрегая массой вала, зависимость (f), т. е. угловую скорость платформы, как функцию времени.
На всех рисунках груз D показан в положении, при котором s>0 (когда s<0, груз находится по другую сторону от точки А). Изображая чертеж решаемой задачи, провести ось г на заданном расстоянии ОС = b от центра С.
Указания. Задача Д5 — на применение теоремы об изменении кинетического момента системы. При применении теоремы к системе, состоящей из платформы и груза, кинетический момент Кг системы относительно оси г определяется как сумма моментов платформы н груза. При этом следует учесть, что абсолютная скорость груза складывается из относительной уоти н переносной опер скоростей, т. е. v = v0тн + vпер

$1.25
$1.25

Тарг 1989 Динамика д6 вар 70

Задача Д6
Тарг С.М. 1989 г
Динамика Д6-70
вариант 70
рисунок 7 условие 0  http://reshuzadachi.ru/node/1371
Механическая система состоит из грузов 1 и 2, ступенчатого шкива 3 с радиусами ступеней  = 0,3 м, 0,1 м и радиусом инерции относительно оси вращения р3 = 0,2 м, блока 4 радиуса
Ra = 0,2 м и катка (или подвижного блока) 5 (рис. Д6.0 — Д6.9, табл. Д6); тело 5 считать сплошным однородным цилиндром, а массу блока 4 — равномерно распределенной по ободу. Коэффициент трения грузов о плоскость  0,1. Тела системы соединены друг с другом нитями, перекинутыми через блоки и намотанными на шкив 3 (или на шкив и каток); участки нитей параллельны соответствующим плоскостям. К одному из тел прикреплена пружина с коэффициентом жесткости с.
Под действием силы F = f(s), зависящей от перемещения s точки ее приложения, система приходит в движение из состояния покоя; деформация пружины в момент начала движения равна нулю. При движении на шкив 3 действует постоянный момент М сил сопротивления (от трения в подшипниках).
Определить значение искомой величины в тот момент времени, когда перемещение s станет равным Si = 0,2 м. Искомая величина указана в столбце «Найти» таблицы, где обозначено: скорости грузов 1,2 и центра масс тела 5 соответственно— угловые скорости тел 3 и 4.
Все катки, включая и катки, обмотанные нитями (как, например, каток 5 на рис. 2), катятся по плоскостям без скольжения. На всех рисунках не изображать груз 2, если  0; остальные тела должны изображаться и тогда, когда их масса равна нулю.

$1.25
$1.25
RSS-материал