Физика для заочников БНТУ ЭФ, ФИТР
- Для комментирования войдите или зарегистрируйтесь
Физика для заочников БНТУ ЭФ, ФИТР ВСЯ ГОТОВАЯ (10 у.е)
Контрольная работа № 1
Таблица вариантов
№ |
Номера задач |
|||||||
0 |
110 |
120 |
130 |
140 |
150 |
160 |
170 |
180 |
1 |
101 |
111 |
121 |
131 |
141 |
151 |
161 |
171 |
2 |
102 |
112 |
122 |
132 |
142 |
152 |
162 |
172 |
3 |
103 |
113 |
123 |
133 |
143 |
153 |
163 |
173 |
4 |
104 |
114 |
124 |
134 |
144 |
154 |
164 |
174 |
5 |
105 |
115 |
125 |
135 |
145 |
155 |
165 |
175 |
6 |
106 |
116 |
126 |
136 |
146 |
156 |
166 |
176 |
7 |
107 |
117 |
127 |
137 |
147 |
157 |
167 |
177 |
8 |
108 |
118 |
128 |
138 |
148 |
158 |
168 |
178 |
9 |
109 |
119 |
129 |
139 |
149 |
159 |
169 |
179 |
101. Вагон движется равнозамедленным с отрицательным ускорением –0,5 м/с2. Начальная скорость вагона 54 км/ч. Через сколько времени и на каком расстоянии от начальной точки вагон остановится?
102. Зависимость пройденного телом пути S от времени t дается уравнением S=A+Bt+Сt2+Dt3 Через сколько времени после начала движения ускорение тела будет равно a. Чему равно среднее ускорение тела за этот промежуток времени?
103. Материальная точка движется согласно уравнениям х=7+4t, у=2+3t. Какова скорость движения материальной точки?
104. Тело брошено с вышки в горизонтальном направлении со скоростью 20 м/с. Определить скорость, тангенциальное и нормальное ускорение тела через две секунды после начала движения.
105. Две прямые дороги пересекаются под углом . От перекрестка по ним удаляются машины: одна со скоростью 60 км/ч, другая со скоростью 80 км/ч. Определить скорости с которыми одна машина удаляется от другой. Перекресток машины прошли одновременно.
106. Тело, брошенное вертикально вверх, находилось на одной и той же высоте 8,6 м два раза с интервалом 3 с. Пренебрегая сопротивлением воздуха, вычислить начальную скорость брошенного тела.
107. Колесо автомашины вращается равноускоренно. Сделав 50 полных оборотов, оно изменило частоту вращения от 4 об/c до 6 об/с . Определить угловое ускорение колеса.
108. По окружности радиусом 20 см движется материальная точка. Уравнение ее движения S=2t2+t . Чему равны тангенциальное, нормальное и полное ускорение точки в момент времени, равный 10 с.
109. Точка движется по окружности радиусом 30 см с постоянным угловым ускорением. Определить тангенциальное ускорение точки, если известно, что за время 4 с она совершила три оборота и в конце третьего оборота ее нормальное ускорение равно 2,7 м/с2.
110. Колесо, вращаясь равнозамедленно, при торможении уменьшило свою частоту за 1 минуту с 300 до 180 об. Найти угловое ускорение колеса и число оборотов, сделанное им за это время.
111. Диск радиусом 20 см вращается согласно уравнению , где А = 3 рад, В = -1 рад/с, С = 0,1 рад/с3. Найти тангенциальное, нормальное и полное ускорения точек на окружность диска в конце десятой секунды после начала вращения.
112. Шайба, пущенная по поверхности льда с начальной скоростью 20 м/с, остановилась через 40 с. Найти коэффициент трения шайбы о лед.
113. Шарик массой 110 г упал с высоты 2,5 м на горизонтальную плиту, масса которой много больше массы шарика, и отскочил от нее вверх. Считая удар абсолютно упругим, определить импульс, полученный плитой.
114. Тело массой 0,5 кг движется прямолинейно, причем зависимость пройденного пути от времени дается уравнением S=Сt2-Dt3, где С = 5 м/c2, D = 1 м/c3. Найти силу, действующую на него в конце первой секунды движения.
115. Автомобиль массой 1020 кг останавливается при торможении за 5 с, пройдя при этом равнозамедленно расстояние 25 м. Найти начальную скорость автомобиля и силу торможения.
116. На столе стоит тележка массой 4 кг. К тележке привязан один конец шнура, перекинутого через блок. С каким ускорением будет двигаться тележка, если к другому концу шнура привязать гирю массой 1 кг? Трение не учитывать.
117. Автомобиль массой 5 т движется со скоростью 10 м/с по выпуклому мосту. Определить силу давления автомобиля на мост в его верхней части, если радиус кривизны моста равен 50 м.
118.Снаряд массой 2 кг, летящий со скоростью 30 м/с попадает в мишень с песком массой 100 кг и застревает в ней. С какой скоростью и в каком направлении будет двигаться мишень после попадания снаряда в случаях: 1) мишень неподвижна; 2) мишень двигается в одном направлении со снарядом со скоростью 72 км/ч?
119. Стальной шарик массой 10 г упал с высоты 1 м на стальную плиту и подскочил после удара на 0,8 м. Определить импульс, полученный плитой.
120. Две гири массами 1,9 и 0,9 кг соединены гибкой нерастяжимой нитью перекинутой через неподвижный блок, вращающийся без трения. С каким ускорением будут двигаться грузы? Чему равна сила натяжения нити? Массой блока и нити пренебречь.
121. На барабан массой 9 кг намотан шнур, к концу которого привязан груз массой 2 кг. Найти ускорение груза. Барабан считать однородным цилиндром. Трением нити пренебречь, шнур считать невесомым и нерастяжимым.
122. Маховое колесо, имеющее момент инерции 245 , вращается, делая 20 oб/с. Через минуту после того, как на его перестал действовать вращающий момент, оно остановилось. Найти: а) момент сил трения; б) число оборотов, которое сделало колесо до полной остановки после прекращения действия сил.
123. Кинетическая энергия вала, вращающегося с постоянной скоростью, соответствующей частоте 5 об/с, равна 60 Дж. Найти момент импульса вала.
124. Найти линейное ускорение движения центра масс диска, скатывающегося с наклонной плоскости без скольжения. Угол наклона плоскости равен 300.
125. К ободу диска массой 5 кг приложена касательная сила 19,6 Н. Какую кинетическую энергию будет иметь диск через 5 с после начала действия силы?
126. Шар массой 4 кг движется со скоростью 5 м/с и сталкивается с шаром массой 6 кг, который движется ему навстречу со скоростью 2 м/с. Определить скорости шаров после удара. Удар считать абсолютно упругим, прямым, центральным.
127. Из ствола автоматического пистолета вылетела пуля массой 10 г со скоростью 30 м/с. Затвор пистолета массой 200 г прижимается к стволу пружиной, жесткость которой 25 кН/м. На какое расстояние отойдет затвор после выстрела? Считать, что пистолет жестко закреплен.
128. Орудие жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом к линии горизонта. Определить скорость отката платформы, если снаряд вылетает со скоростью 480 м/с. Масса платформы с орудием и снарядами 18 т, масса снаряда 60 кг.
129. Определить работу растяжения двух соединенных последовательно пружин жесткостями 400 Н/м и 250 Н/м, если первая пружина при этом растянулась на 2 см.
130. Какая работа будет совершена силами гравитационного поля при падении на Землю тела массой 2 кг: 1) с высоты 1000 км; 2) из бесконечности?
131. Определить частоту гармонических колебаний диска радиусом 20 см около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости.
132. Определить возвращающую силу в момент времени 0,2 с и полную энергию точки массой 20 г, совершающей гармонические колебания согласно уравнению , где А = 15 см; .
133. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых и где А1 = 8 см, А2 = 4 см, Написать уравнение траектории и построить ее. Показать направление движения точки.
134. Определить период колебаний стержня длиной 30 см около горизонтальной оси, перпендикулярной стержню и проходящей через его конец.
135. Складывается два колебания одинакового направления и одинакового периода: и где А1 = А2 = 3 см; Определить амплитуду и начальную фазу результирующего колебания. Написать его уравнение. Построить векторную диаграмму для момента времени t = 0.
136. Определить скорость распространения волн в упругой среде, если разность фаз колебаний двух точек, отстоящих друг от друга на см, равна . Частота колебаний 25 Гц.
137. Поперечная волна распространяется вдоль упругого шнура со скоростью 10 м/с. Период колебаний точек шнура 1 с, амплитуда 1,5 см. Определить длину волны, скорость и ускорение точки, отстоящей от источника колебаний на расстоянии 20 см, в момент времени 5 с.
138. Определить скорость распространения волн в упругой среде, если разность фаз колебаний двух точек среды, отстоящих друг от друга на расстоянии 20 см, равна . Частота колебаний 50 Гц.
139. Волны в упругой среде распространяются со скоростью 15 м/с. Чему равно смещение точки, находящейся на расстоянии 3 м от источника колебаний, через 4 с от начала колебаний? Период колебаний 1 с, амплитуда колебаний 2 см.
140. Во сколько раз скорость распространения звука в воздухе летом (температура 270С) больше скорости распространения звука зимой (температура –330С)?
141. Котел объемом 20 л содержит углекислый газ массой 500 г под давлением 1,3 МПа. Определить температуру газа.
142. Сферический сосуд радиусом r, содержащий газ при давлении p1, и температуре Т1, находится в вакууме. Через отверстие в сосуде часть газа вытекает. Каким станет давление в сосуде, если из него выйдет N молекул газа?
143. Какой объем занимает смесь газов, состоящая из азота массой 1 кг и гелия массой 1 кг при нормальных условиях?
144. Сравнить количество вещества в алюминиевой и железной отливках: 1) равных масс; 2) равных объемов.
145. В шарике ртутного термометра содержится 3,6×1021 молекул. Определить массу ртути в шарике термометра. Сколько молекул и какое количество вещества содержалось бы в шарике такого же объема спиртового (С2Н5ОН) термометра?
146. Смесь азота и гелия при температуре 270С находится под давлением 1,3×102 Па. Масса азота составляет 70% от общей массы смеси. Найти концентрацию молекул каждого из газов. 147. Смесь кислорода и азота при температуре 290 К и давлении 5,8 кПа имеет плотность Определить концентрацию молекул кислорода в смеси.
148. Максимальная температура, получаемая при мощных импульсах разрядах достигает 106 К. Определить среднюю квадратичную скорость и среднюю кинетическую энергию поступательного движения ионов водорода при этой температуре. ()
149. Средняя квадратичная скорость молекул некоторого газа при температуре 296 К, равна 480 м/c. Сколько молекул содержится в 10 г этого газа?
150. Определить плотность газа в колбе электрической лампы накаливания, если молекулы газа производят на стенку колбы давление 80 КПа, а средний квадрат скорости поступательного движения молекул 2,5×105 м2/с2.
151. Найти среднюю квадратичную скорость, среднюю кинетическую энергию поступательного движения и среднюю полную кинетическую энергию молекул гелия и азота при температуре 270С. Определить полную энергию всех молекул 100 г каждого из газов.
152. 10 г кислорода находятся под давлением 3×105 Па при температуре 100С. После нагревания при постоянном давлении газ занял объем в 10 л. Найти: 1) количество тепла, полученного газом; 2) энергию теплового движения газа до и после нагревания.
153. Какое количества углекислого газа можно нагреть от 200С до 1000С количеством тепла 8 кДж? На сколько при этом изменится кинетическая энергия одной молекулы? Во время нагревания газ расширяется при р=const;
154. 2 л азота находятся под давлением 105 Па. Какое количество тепла надо сообщить азоту, чтобы 1) при p=const объем увеличить вдвое; 2) при V=const давление увеличить вдвое?
155. Коэффициент диффузии водорода (Н2) при нормальных условиях равен 1,31 см2/с. Определить величину коэффициента внутреннего трения молекул водорода (Н2) при этих же условиях.
156. Коэффициента внутреннего трения азота (N2) при 00С равен . Определить значение средней длинны свободного пробега молекул азота при нормальном давлении.
157. Какое количество теплоты необходимо для нагревания 9 г аргона от температуры 100С до температуры 250С, если он находится в цилиндре, закрытом тяжелым поршнем? Чему равно изменение внутренней энергии аргона?
158. Разрядная трубка гелий ¾ неонового лазера объёмом заполняется смесью гелия и неона с парциальным давлениями 150 Па и 30 Па соответственно. Определить внутреннюю энергию газов.
159. В теплоизолированный цилиндр объемом 10 л, содержащий, азот при температуре 27 0С и давлении 0.01 МПа, внесен медный шар массой 100 г, нагретый до 270С. Какая температура установится в цилиндре в результате теплообмена? Теплоемкостью цилиндра пренебречь.
160. 12 г азота находятся в закрытом сосуде объемом 2 л при t = 100С. После нагревания давление в сосуде стало равным 104 мм рт. ст. Какое количество тепла было сообщено газу при нагревании?
161. В сосуде объемом 10 л находится кислород (О2) под давлением 105 Па. Стенки сосуда могут выдержать внутреннее давление до 106 Па. Газ идеальный, СP/СV=1,4. Определить, какое максимальное количество теплоты можно сообщить газу в этом сосуде.
162. При изобарическом нагревании аргона, газ совершил работу 8 Дж. Какое количество теплоты было сообщено газу?
163. Вода кипит в электрическом чайнике с нагревателем мощностью 1 кВт. Считая пар идеальным газом, определить скорость истечения пара из носика чайника, площадь сечения которого 1 см2. Давление на конце носика 0,1 МПа.
164. Кислород массой 2 кг занимает объем 1 м3 и находится под давлением 0,2 МПа. Газ был нагрет сначала при постоянном давлении до объема 3 м3, а затем при постоянном объеме до давления 0,5 МПа. Найти изменение внутренней энергии газа, совершенную им работу и теплоту, переданную газом. Построить график процесса.
165. При изобарическом нагревании от 0 до 1000С моль идеального газа поглощает 3,35 кДж тепла. Определить: значение, приращение внутренней энергии газа; работу, совершаемую газом.
166. Некоторая масса азота при давлении 105 Па имела объем 5 л, а при давлении 3×105 Па — объем 2 л. Переход из первоначального состояния в конечное происходит в два этапа: сначала при V=const, затем при p=const. Газ считать идеальным. Определить количество теплоты израсходованное при переходе из первоначального состояния в конечное. Изобразить графически этот переход.
167. В котле паровой машины температура 1500С. Температура холодильника 100С. Какую максимальную работу можно получить от машины, если в топке, КПД которой 80%, сожжено 0,5 т каменного угля теплотворная способность которого 20,5 МДж/кг.
168. Тепловая электростанция мощностью 2,4 ГВт потребляет в час 150 т каменного угля. Перегретый пар, поступающий в турбину, имеет температуру 5600С, температура пара в конденсаторе 300С, определить фактический КПД паровой турбины и сравнить его с КПД идеальной тепловой машины. Теплотворная способность каменного угля 30,3 МДж/кг.
169. Определить КПД цикла, имеющего на диаграмме Т, S вид, изображенный на рис. 1.6. t1=5500С, t2=3000С
170. Определить КПД цикла, имеющего на диаграмме Т, S вид, изображенный на рис. 1.7. t1=5700С, t2=2100С.
171. Определить КПД цикла, имеющего на диаграмме Т, S вид, изображенный на рис. 1.8. t1=6500С, t2=2500С.
|
|
Рис. 1.6 |
Рис. 1.7 |
|
|
Рис. 1.8 |
Рис. 1.9 |
172. Определить КПД цикла, имеющего на диаграмме Т, S вид, изображенный на рис. 1.9. t1=2000С, t2=6000С.
173. Найти постоянные в уравнении Ван-дер-Ваальса для углекислого газа, если критическая температура 304 К, а критическое давление 7370 кПа.
174. Поправки для воды в уравнении Ван-дер-Ваальса равны =0,555 , b=3,06×10-5 м3/моль. Определить критические объем, температуру, давление для 1 кг воды.
175. Критическая температура углекислоты (СО2) равна 310С, критическое давление 73 атм. Определить критический объем одного моля СО2.
176. В воду опущена на очень малую глубину стеклянная трубка с диаметром канала 1 мм. Определить массу воды, вошедшей в трубку, коэффициент поверхностного натяжения воды равен 0.072 Н/м.
177. Найти добавочное давление внутри мыльного пузыря диаметром 10 см. Какую работу надо совершить, чтобы выдуть этот пузырь?
178. Какую работу надо произвести, чтобы выдуть мыльный пузырь диаметром 14 см, если процесс раздувания пузыря изотермический? Чему равно избыточное давление внутри этого пузыря?
179. Какая энергия выделится при слиянии двух капель ртути диаметром 0.8 мм и 1,2 мм в одну каплю? Коэффициент поверхностного натяжения ртути равен 0.5 Н/м.
180. Кислород, масса которого 200 г, нагревают от температуры 27С до 127С. Найти изменение энтропии, если известно, что начальное и конечное давления одинаковы и близки к атмосферному.
Контрольная работа № 4
Таблица вариантов
№
Номера задач
0
410
420
430
440
450
460
470
480 490
1
401
411
421
431
441
451
461
471 481
2
402
412
422
432
442
452
462
472 482
3
403
413
423
433
443
453
463
473 483
4
404
414
424
434
444
454
464
474 484
5
405
415
425
435
445
455
465
475 485
6
406
416
426
436
446
456
466
476 486
7
407
417
427
437
447
457
467
477 487
8
408
418
428
438
448
458
468
478 488
9
409
419
429
439
449
459
469
479 489
401. В опыте Юнга отверстия освещались монохроматическим светом с длиной волны 6×10-5 см, расстояние между отверстиями 1 мм и расстояние от отверстий до экрана 3 м. На каком расстоянии от центра экрана находится три первые светлые полосы.
402. Во сколько раз увеличится ширина интерференционной полосы на экране в опыте Юнга, если зеленый светофильтр заменить красным. Длина волны зеленого излучения равна 5×10-5 см, красного –6,5×10-5 см.
403. На мыльную пленку (n = 1,33) падает белый свет под углом 450. При какой наименьшей толщине пленки отраженные лучи будут окрашены в желтый цвет (l = 6×10-5 см).
404. Найти все длины волн видимого света (от 0,76 до 0,38 мкм), которые будут: 1) максимально усилены; 2) максимально ослаблены при оптической разности хода интерферирующих волн, равной 1,8 мм.
405. На тонкий стеклянный клин в направлении нормали к его поверхности падает монохроматический свет с длиной волны 600 нм. Определить угол между поверхностями клина, если расстояние между смежными интерференционными минимумами в отраженном свете равно 4 мм.
406. Установка для получения колец Ньютона освещается монохроматическим светом. Наблюдение ведется в отраженном свете. Радиусы двух соседних темных колец равны соответственно 4 мм и 4,38 мм. Радиус кривизны линзы равен 6,4 м. Найти порядковые номера колец и длину волны падающего света.
407. Установка для наблюдения колец Ньютона в отраженном свете освещается монохроматическим светом, падающим нормально. После того как пространство между линзой и стеклянной пластикой заполнили жидкостью, радиусы темных колец уменьшились в 1,25 раза. Найти показатель преломления жидкости.
408. На щель шириной 2×10-3 см нормально падает параллельный пучок монохроматического света с длиной волны 5×10-5 см. Найти ширину изображения щели на экране, удаленном от щели на 1 м. Шириной изображения считать расстояние между первыми дифракционными минимумами, расположенными по обе стороны от главного максимума.
409. Дифракционная решетка содержит 200 штрихов на миллиметр. На решетку падает нормально монохроматический свет с длиной волны 0,6 мкм. Максимум, какого наибольшего порядка дает эта решетка? Найти общее число дифракционных максимумов.
410. Определить длину волны монохроматического света, падающего нормально на дифракционную решетку с периодом 2,2 мкм, если угол между максимумами второго и третьего порядков спектра равен 150.
411. При освещении дифракционной решетки белым светом спектры второго и третьего порядков частично перекрываются. На какую длину волны в спектре второго порядка накладывается фиолетовая граница (l = 0,4 мкм) спектра третьего порядка?
412. На дифракционную решетку нормально падает пучок света. Угол дифракции для натриевой линии с длиной волны 589 нм составляет 1708¢. Некоторая линия дает в спектре второго порядка угол дифракции, равный 24012¢. Найти длину волны этой линии и число штрихов на 1 мм решетки.
413. Какой наименьшей разрешающей способностью должна обладать дифракционная решетка, чтобы с ее помощью можно было разрешить две спектральные линии калия (578 нм и 580 нм)? Какое наименьшее число штрихов должна иметь эта решетка, чтобы разрешение было возможно в спектре второго порядка?
414. Излучение рентгеновской трубки падает на кристалл кальция. Наименьший угол между плоскостью кристалла и пучком рентгеновских лучей равен 2036¢. Постоянная решетка кальцита равна 3,04×10-8 см. Под каким напряжением работает рентгеновская трубка?
415. Чему равен показатель преломления стекла, если при отражении от него света отраженный луч полностью поляризован при угле преломления, равном 300.
416. Предельный угол полного отражения пучка света на границе жидкости с воздухом равен 430. Определить угол Брюстера для падения луча из воздуха на поверхность этой жидкости.
417. Естественный свет проходит через поляризатор и анализатор, плоскости пропускания которых образуют между собой угол a. Интенсивность луча, вышедшего из анализатора, равна 9% интенсивности естественного света, падающего на поляризатор. Принимая коэффициент поглощения поляризатора и анализатора равным 0,08, найти угол a.
418. Чему равен угол между плоскостями пропускания поляризатора и анализатора, если интенсивность естественного света, прошедшего через них, уменьшается в четыре раза? Поглощением света пренебречь.
419. Раствор глюкозы с концентрацией 280 кг/м3, содержащейся в стеклянной трубке, поворачивает плоскость поляризации монохроматического света, проходящего через этот раствор, на 320. Определить концентрацию глюкозы в другом растворе, налитом в трубку такой же длины, если он поворачивает плоскость поляризации на угол 240.
420. Пластинку кварца толщиной 2 мм, вырезанную перпендикулярно оптической оси, поместили между параллельными николями, в результате чего плоскость поляризации света повернулась на угол 530. Определить толщину пластинки, при которой данный монохроматический свет не проходит через анализатор.
421. Частица движется со скоростью равной половине скорости света. Во сколько раз энергия движущейся частицы больше энергии покоя?
422. Электрон движется со скоростью равной 0,6 скорости света. Определить импульс электрона и его кинетическую энергию.
423. Кинетическая энергия электрона равна 2 МэВ. Во сколько раз его энергия больше энергии покоя? Сделать такой же подсчет для протона.
424. Максимальная скорость фотоэлектронов, вылетающих из металла при облучении его g – фотонами, равна 2,91×108 м/с. Определить энергию g - фотона.
425. Вакуумный фотоэлемент, состоящий из центрального катода (вольфрамового шарика) и анода (внутренней поверхности колбы), освещается светом с длиной волны 230 нм. Какую задерживающую разность потенциалов надо приложить между электродами, чтобы пототок упал до нуля? При расчетах учесть, что между электродами существует контактная разность потенциалов 0,6 В, ускоряющая вылетающие из катода электроны. Работа выхода электронов из вольфрама равна 4,5 эВ.
426. Можно ли использовать барий в фотоэлементах для видимой области спектра, если работа выхода для бария 2,5 эВ?
427. Рентгеновские лучи с длиной волны 0,02 нм испытывают комптоновские рассеяния под углом 900. Найти: 1) изменение длины волны рентгеновских лучей при рассеянии; 2) кинетическую энергию электрона при отдаче; 3) импульс электрона отдачи.
428. Определить импульс электрона отдачи при эффекте Комптона, если фотон с энергией, равной энергии покоя электрона, был рассеян на угол, равный 1800.
429. В результате комптоновского рассеяния g - кванте с энергией 2 МэВ его длина волны изменилась на 30%. Определить кинетическую энергию электрона отдачи.
430. Какая доля энергии фотона при эффекте Комптона приходится на электрон отдачи, если фотон претерпел рассеяние на угол 1800? Энергия фотона до рассеяния равна 0,225 МэВ.
431. Вольфрамовая нить накаливается в вакууме током 1 А до температуры Т1 = 3000 К? При какой величине тока нить накалится до температуры Т2 = 3000 К? Отношение энергетической светимости вольфрама к энергетической светимости абсолютно черного тела при температурах Т1 и Т2 равны 0,115 и 0,334, а удельное сопротивление вольфрама 25,7×10-8 Ом×м, 96,2×10-8 Ом×м cоответственно.
432. Температура вольфрамовой спирали в 25-ватной электрической лампочке равна 2450 К. Отношение ее энергетической светимости к энергетической светимости абсолютно черного тела при данной температуре равно 0,3. Найти величину излучающей поверхности спирали.
433. Диаметр вольфрамовой спирали в электрической лампочке равен 0,3 мм, длина спирали 5 см. При напряжении 127 В через лампочку течет ток 0,31 А. Найти температуру спирали. Отношение энергетических светимостей вольфрама и абсолютно черного тела считать для этой температуры равным 0,31.
434. Определить длины волн, соответствующие максимуму спектральной плотности энергетической светимости, если источником света служит: 1) спираль электрической лампочки (Т1=3000 К); 2) солнце (Т2=6000 К). Считать, что источники излучают как абсолютно черное тело.
435. Вследствие изменения температуры абсолютно черного тела максимум спектральной плотности энергетической светимости сместился с 2,4 мкм на 0,8 мкм. Как и во сколько раз изменилась энергетическая светимости тела и максимальное значение спектральной плотности энергетической светимости.
436. Мощность излучения абсолютно черного тела равна 108 Вт. Найти величину излучающей поверхности тела, если известно, что длина волны, на которую приходится максимум спектральной плотности энергетической светимости, равна 7×10-5 см.
437. Найти давление света на поверхность колбы электрической 100 - ватной лампы. Колба лампы представляет собой сферический сосуд радиусом 5 см. Поверхность колбы лампы отражают 10% падающего света. Считать, что вся потребляемая мощность идет на излучение.
438. Монохроматический пучок света с длиной волны 0,662 мкм падает нормально на поверхность с коэффициентом отражения 0,8. Определить количество фотонов ежесекундно поглощаемых 1 см2 поверхности, если давление света на поверхность равно 1 мкПа.
439. Параллельный пучок монохроматического света с длиной волны 662 нм падает на зачерненную поверхность и производит на нее давление 0,3 мкПа. Определить концентрацию фотонов в световом пучке.
440. Ртутная дуга имеет мощность 127 Вт. Сколько квантов света испускается ежесекундно в излучении с длинами волн: 1) 612 нм; 2) 546 нм, 3) 365 нм? Интенсивность этих лучей равна, соответственно, 2%, 4%, 2,5% от интенсивности ртутной дуги. Считать, что 80% мощности идет на излучение.
441. Найти длину волны де Бройля для a - частицы, нейтрона и молекулы азота, движущихся со средней квадратичной скоростью при температуре 250С.
442. Вычислить кинетическую энергию электрона, молекулы кислорода и частицы, радиус которой 0,1 мкм и плотность 2000 г/м3, если каждой из этих частиц соответствует длина волны де Бройля 100 пм.
443. Электрон прошел ускоряющую разность потенциалов 510 кВ. Определить длину волны де Бройля, учитывая релятивистские эффекты.
444. На кристалл никеля падает под углом 640 к поверхности грани параллельный пучок электронов, движущихся с одинаковой скоростью. Расстояние между соседними плоскостями, параллельными грани кристалла, равно 200 пм. Пользуясь уравнением Вульфа-Брегга, найти скорость электронов, если при отражении наблюдается интерференционный максимум 1-го порядка.
445. Электронный пучок с постоянной скоростью падает на поверхность фторида лития. Найти ускоряющую разность потенциалов, при которой наблюдается второй дифракционный максимум под углом 1030¢. Расстояние между соседними атомными плоскостями равно380 пм.
446. Какова неопределенность скорости электрона в атоме водорода? Во сколько раз неопределенность скорости больше скорости электрона на первой боровской орбите? Считать, что наибольшая ошибка в определении координаты электрона будет того же порядка, что и размер атома водорода (d 10-10м).
447. Длительность возбужденного состояния атома водорода соответствует примерно 10-7 с. Какова неопределенность энергии в этом состоянии?
448. Наименьшая неточность, с которой можно найти координату электрона в атоме водорода, порядка 10-10 м. Найти неопределенность средней кинетической энергии электрона в невозбужденном атоме водорода.
449. Диаметр пузырька в жидководородной пузырьковой камере составляет величину порядка 10-7 м. Оценить неопределенность скоростей электрона и a - частицы в такой камере, если неопределенность координаты принять равной диаметру пузырька.
450. Ширина следа электрона на фотографии, полученной с помощью камеры Вильсона составляет 10-3 м. Найти неопределенность скорости.
451. Во сколько раз увеличится радиус орбиты электронов у атома водорода, находящегося в основном состоянии, при возбуждении его фотоном энергией 12,09 эВ?
452. Пользуясь представлениями модели атома Резерфорда-Бора, вывести формулу скорости движения электрона по орбите. Вычислить его скорость на двух первых электронных круговых орбитах в атоме водорода. На какой орбите скорость электрона атома водорода равна 734 км/с?
453. Переход электрона в атоме водорода с n - й на к - ю орбиту (к = 1) сопровождается излучением фотона с длиной волны l = 102,6 нм. Найти радиус n - й орбиты.
454. Атом водорода переведен из нормального состояния в возбужденное, характеризуемое главным квантовым числом 2. Найти энергию, необходимую для перевода атома водорода в указанное возбужденное состояние.
455. При переходе электрона водородного атома с одной из возможных орбит на другую, более близкую к ядру, энергия атома уменьшается на 1,892 эВ. Определить длину волны излучения.
456. Электрон находится в одномерной бесконечно глубокой потенциальной яме шириной м, с абсолютно непроницаемыми стенками. Найти наименьшее значение энергии электрона.
457. Нейтрон находится в одномерной бесконечно глубокой потенциальной яме шириной с абсолютно непроницаемыми стенками. Найти наименьшую разность энергий двух соседних энергетических уровней нейтрона.
458. Какова ширина одномерной потенциальной ямы с бесконечно высокими стенками, если при переходе электрона со второго квантового уровня на первый излучается энергия 1 эВ? Как изменится излучаемая энергия, если ширина потенциальной ямы увеличится в 10 раз?
459. Определить, при какой ширине потенциального ящика дискретность энергии становится сравнимой с энергией теплового движения при температуре Т.
460. Ширина запрещенной зоны алмаза 6 эВ. Найти длинноволновую границу поглощения света алмазом.
461. Энергия Ферми при абсолютном нуле для натрия равна 3,15 эВ. Найти число свободных электронов, приходящихся на один атом натрия.
462. Концентрация свободных электронов проводимости в металлах равна 5×1022 см-3. Найти среднее значение энергии свободных электронов при абсолютном нуле.
463. Концентрация свободных электронов натрия равна 3×1028 м-3. Найти скорость электронов на уровне Ферми при абсолютном нуле.
464. Использую квантовую теорию теплоёмкости Дебая, вычислить изменение молярной внутренней энергии кристалла при нагревании его на 2 К от температуры Т=qД/20, qД=300 К.
465. Пользуясь теорией теплоемкости Дебая, определить изменение молярной внутренней энергии кристалла при нагревании его от нуля до Т1 = 0,1 qД, qД =300 К.
466. С помощью камеры Вильсона помещенной в магнитное поле с магнитной индукцией В, наблюдают упругое рассеяние a - частиц на ядрах дейтерия. Найти начальную энергию a - частицы, если радиусы кривизны начальных участков траекторий ядра отдачи и рассеянной a - частицы оказались одинаковыми и равными r. Обе траектории лежат в плоскости, перпендикулярной к линиям магнитной индукции магнитного поля. Заряд протона q, его масса М.
467. Камера Вильсона заполнена смесью водорода (Н2), паров спирта (С2Н5СН) и воды (Н2О) и облучается потоком быстрых нейтронов. В некоторой точке имеет место распад ядра атома газа, заполняющего камеру, и наблюдаются треки двух протонов и двух a - частиц, начинающиеся в этой же точке. Ядро какого элемента распалось в указанной точке камеры?
468. Длина следа, а, следовательно, и количество активизированных молекул бромистого серебра (AgBr) в фотоэмульсии зависят от величины энергии пролетающей частицы. Сколько примерно молекул AgBr может активизировать a - частица с энергией 5 МэВ, если известно, что фотохимические изменения происходят в бромистом серебре при длине падающего света 600 нм?
469. Наблюдая за изменением количества ядер изотопа в изделиях из дерева, можно определить их возраст. Определить возраст изделия из дерева, если известно, что число ядер изотопа в нем уменьшилось в 3 раза по сравнению со свежей древесиной. Период полураспада составляет 5570 лет.
470. Сколько a - частиц излучает 1 г тория за 1 с?
471. Какое количество энергии освободится, если разделятся все ядра, содержащиеся в 1 г . При делении ядра освобождается энергия 200 МэВ.
472. Сколько ядер должно делится в 1 секунду, чтобы тепловая мощность ядерного реактора была равна 1 Вт? При каждом распаде ядра выделяется энергия 200 МэВ.
473. Тепловая мощность ядерного реактора 10000 кВт. Какое количество потребуется употребить реактору в сутки? При каждом распаде ядра выделяется энергия 200 МэВ.
474. Атомная электростанция мощностью 500000 кВт имеет КПД 20%. Определить годовой расход ядерного горючего, если за каждый акт деления выделяется 200 МэВ энергии. Сравнить полученный результат с годовым расходом каменного угля тепловой электростанции той же мощности при КПД 75%. Теплота сгорания каменного угля 30 МДж/кг.
475. Найти электрическую мощность атомной электростанции, расходующей 0,1 кг в сутки, если КПД станции равен 16%. За каждый акт деления выделяется 200 МэВ энергии.
476. Сколько производит реактор мощностью 100 МВт в течение месяца, если принять, что в среднем при одном акте деления ядра возникает 1,5 ядра плутония?
477. В проекте термоядерного реактора предполагается использовать реакцию. Однако трития в природе не существует. Его можно получать в том же реакторе за счет реакции. Пользуясь законами сохранения заряда и массы ядер, определить характеристики неизвестного ядра и энергию реакции.
478. Вычислить КПД двигателей атомного ледокола, если их мощность 3,2×104 кВт, а атомный реактор расходует 200 г урана-235 в сутки. Вследствие деления одного ядра атома выделяется энергия 200 МэВ.
479. Сколько энергии выделится при ядерном делении урана массой 1 кг в урановом реакторе? Сколько угля необходимо сжечь для получения такого же количества теплоты (удельная теплота сгорания угля равна 29,3 МДж/кг)? Средняя энергия, выделившееся при делении одного атома урана, составляет 200 МэВ.
480. При сгорании ядерного топлива на атомной электростанции за 1 с выделяется приблизительно 28,5 МДж энергии. Сколько ядерного горючего расходует станция за сутки, если принять, что один атом урана при делении на два осколка выделяет 200 МэВ энергии? КПД АЭС 17%.
481. Мощность экспозиционной дозы, создаваемая удаленным источником g-излучения с энергией фотонов 2 МэВ, равна 0,86 мкА/кг. Определить толщину свинцового экрана, снижающего мощность экспозиционной дозы до уровня предельно допустимой, равной 0,86 нА/кг. (см. рис. 4.1)
482. На расстоянии 10 см от точечного источника g-излучения мощность экспозиционной дозы 0,86 нА/кг. На каком наименьшем расстоянии от источника экспозиционная доза излучения за рабочий день продолжительностью t = 6 часов не превысит предельно допустимую 5,16 мкКл/кг? Поглощением g-излучения в воздухе пренебречь.
483. Мощность экспозиционной дозы гамма излучения на расстоянии 40 см от точечного источника равна 4,3 мкА/кг. Определить время, в течение которого можно находится на расстоянии 6 м от источника, если предельно допустимую экспозиционную дозу принять равной 5,16 мкКг/кг. Поглощением g-излучения в воздухе пренебречь.
484. На 1 см2 поверхности кожи падает нормально 105 a - частиц с энергией 5 МэВ. Определить среднее значение поглощенной дозы (в Греях и Зивертах) в слое, равном глубине проникновения a - частиц в биологическую ткань. Известно, что пробег a - частиц в биологической ткани в 815 раз меньше пробега в воздухе. Для a - частиц коэффициент качества равен 10. Плотность биологической ткани равна плотности воды.
485. Какое количество a - частиц с энергией 4,4 МэВ, поглощенных в 1 г биологической ткани, соответствует поглощенной дозе 0,5 Зв? Для a - частиц коэффициент качества равен 10.
486. На каком расстоянии от небольшого изотропного источника быстрых нейтронов интенсивностью 4×107 нейтрон мощность дозы нейтронного излучения будет равна предельно допустимой при 18-часовой рабочей неделе?
487. Эффективная вместимость ионизационной камеры карманного дозиметра равна 1 см3, электроемкость 2 пФ. Камера содержит воздух при нормальных условиях. Дозиметр был заряжен до потенциала 150 В. Под действием излучения потенциал понизился до 120 В. Определить дозу экспозиционного облучения, действию которого подвергается человек за сутки.
488. Собственный полупроводник (германиевый) имеет при некоторой температуре удельное сопротивление 0,5 Ом×м. Определить концентрацию носителей тока, если подвижности электронов и дырок равны 38 м2/(В×с) и 0,18 м2/(В×с) соответственно.
489. Тонкая пластинка из кремния шириной 2 см помещена перпендикулярно магнитному полю магнитная индукция которого равна 0,3 Тл. При плотности тока 2 мкА/мм2, направленной вдоль пластины, холловская разность потенциалов оказалась 2,8 В. Определить концентрацию носителей тока.
490. Подвижность электронов и дырок в кремнии соответственно равна 0,38 м2/(В×с) и 0,18 м2/(В×с). Вычислить постоянную Холла для кремния, если удельное сопротивление кремния равно 6,2×102 Ом×м.