Контрольная работа № 1 по физике БГУИР вариант 5
Контрольная работа №1 по физике БГУИР вариант 5
Вариант 5
10 задач
по методичке БГУИР Дорошевич, И. Л.
стоимость одной задачи - 1$
Подробнейшие решения от руки понятным почерком, качество супер
Механика, молекулярная физика и термодинамика: учеб.-метод. комплекс по курсу «Физика» для студ. всех спец. БГУИР заоч. формы обуч./ II. Л. Дорошевич. В. А. Морозов. - Минск : БГУИР. 2007. - 86 с.: ил.
105. Частица движется так, что ее скорость изменяется со временем по закону (м/с), где t – время в секундах. В начальный момент времени t0= 0 частица находилась в точке с координатами (0; 0; 1 м). Найти: 1) зависимость от времени модуля скорости частицы; 2) зависимости от времени вектора ускорения и модуля ускорения; 3) кинематический закон движения частицы; 4) радиус-вектор в момент времени t1=1,0 c; 5) модуль перемещения частицы за время .
115. Маховик в виде однородного кольца массой m и радиусом R с невесомыми спицами начинает вращаться вокруг неподвижной оси, проходящей через центр маховика перпендикулярно его плоскости, под действием касательной силы, приложенной к ободу маховика. Модуль силы зависит от времени как , где – некоторая положительная постоянная. Найти угловую скорость 1 маховика в момент времени t1 после начала действия силы.
125. На железнодорожной платформе, равномерно движущейся со скоростью 14,5 м/с, жестко закреплено орудие, из которого произведен выстрел в сторону ее движения, после чего скорость платформы стала равной 12,0 м/с, а направление ее движения не изменилось. Определить модуль скорости снаряда относительно платформы, если вектор этой скорости составляет с горизонтом угол 600. Масса снаряда 15 кг, масса платформы с орудием 885 кг.
135. На краю скамьи Жуковского массой 80 кг, вращающейся с угловой скоростью 1,0 рад/с, стоит человек. Определить массу человека, если при его переходе в центр скамьи угловая скорость ее вращения увеличилась до 2,5 рад/с. Момент инерции человека рассчитывать как для материальной точки.
145. После вертикального запуска с поверхности Земли и выключения двигателя скорость ракеты на высоте 2,4•106 м равна 4,7 км/с. Определить максимальную высоту подъема ракеты над поверхностью Земли. Принять, что на ракету действует только сила тяготения со стороны Земли, а масса ракеты остается постоянной. Масса Земли и ее радиус известны.
155. Тонкий однородный стержень массой и длиной может свободно вращаться относительно горизонтальной оси, проходящей перпендикулярно стержню через один из его концов. На расстоянии, равном трети длины стержня, от второго его конца, укреплен грузик массой . Определить период малых колебаний этой системы относительно указанной оси.
165. Частица массой 20 г совершает колебания вдоль оси Ox по закону (м). Определить период колебаний частицы и энергию ее колебаний. Найти в момент времени 0,2 с проекцию вектора скорости и проекцию упругой силы.
175. Угарный газ (СО) находится в равновесном состоянии, при котором средняя кинетическая энергия вращательного движения одной его молекулы составляет 5,38•10–21 Дж. Определить: 1) среднюю кинетическую энергию поступательного движения молекулы; 2) среднюю энергию теплового движения молекулы; 3) среднюю квадратичную скорость молекулы. Молекулу считать жесткой.
185. Идеальный двухатомный (с жесткой связью) газ находится под давлением p1 = 300 кПа, занимая при этом объем V1 = 60 л. Над газом последовательно проводят следующие процессы: – изотермическое расширение до объема ; – изобарное уменьшение объема до ; – изохорное увеличение давления до . На Vp-диаграмме изобразить график процесса . Определить в ходе всего процесса: 1) изменение внутренней энергии газа; 2) работу сил давления газа; 3) количество теплоты, переданное при этом газу.
195. Идеальный газ совершает цикл Карно. Температура нагревателя в 1,8 раза больше температуры холодильника. Определить количество теплоты, отдаваемой газом за цикл, если при этом к нему подводится 36 кДж теплоты.
- 1025 просмотров