Контрольная работа №4 вариант 6 Чепелев Метельский МСФ ФИТР

Н И Чепелев, А.В. Метельский, Т.Н. Чепелева, Е.А. Федосик, B.C. Марцинкевич

Математика: методическое пособие для студентов заочной формы обучения:  Минск: БНТУ, 2011 Ч. 4 - 70 с.

Контрольная 4 вариант 6

задачи  3 36 66 96 126 156 186

 

В ящике 15 деталей, среди которых 12 окрашенных. Сборщик случайным образом извлекает 5 деталей. Какова вероятность того, что среди извлеченных деталей 3 будут окрашенными?

У стоматолога три вида пломбирующего материала: цемент (50 %), амальгама (30 %) и пластмасса (20 %). Условия лечения таковы, что вероятность выпадения пломбы, сделанной из цемента, в течение первого года после лечения равна 0,5, пломбы из амальгамы – 0,6, из пластмассы – 0,4. У пациента пломба выпала через неделю. Из какого материала вероятнее всего она была сделана, если врач взял тот пломбирующий материал, что оказался под рукой?

Вероятность того, что прибор не выдержит испытание, равна 0,001. Найти вероятность того, что из 1000 приборов более одного не выдержат испытание.

Стрелок делает три выстрела по мишени. Вероятности попадания в цель при первом, втором и третьем выстрелах соответственно равны 0,6; 0,7; 0,8. СВ Х – число попаданий в мишень.

В пятиблочном радиоприемнике (все блоки различные) перегорел один блок. Для устранения неисправности наудачу взятый блок заменяется исправным блоком, после чего проверяется работа приемника. СВ Х – число замененных блоков.

 

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:   1) определить значение параметра а;

                     2) найти функцию распределения F(x);

                     3) найти математическое ожидание М(Х) и дисперсию D(Х);

                     4) построить графики р(х) и F(x).

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

156

4

1,5

3

7

2,8

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сде-      лать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое     отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего     квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить     гипотезу о нормальном распределении СВ с помощью критерия Пирсона при     уровне значимости .

186. Даны данные о среднесуточном пробеге 100 автомобилей автоколонны (в сотнях км):

xi

(сотни км)

1,2–1,6

1,6–2,0

2,0–2,4

2,4–2,8

2,8–3,2

частота mi

8

19

47

20

6

 

$12.00
Артикул: bntu_11_k4v6
Цена: $12.00