Контрольная работа №4 вариант 2 Чепелев Метельский МСФ ФИТР
Авторы:
Н И Чепелев, А.В. Метельский, Т.Н. Чепелева, Е.А. Федосик, B.C. Марцинкевич
Математика: методическое пособие для студентов заочной формы обучения: Минск: БНТУ, 2011 Ч. 4 - 70 с.
Контрольная 4
задачи 2 32 62 95 122 152 182
Для подготовки к экзамену студент должен изучить 50 теоретических вопросов и научиться решать 30 типов задач. Студент, идя на экзамен, выучил 40 теоретических вопросов и научился решать 25 типов задач. Найти вероятность того, что студент сдаст экзамен, если для сдачи экзамена достаточно ответить на любые два задания из билета, содержащего два теоретических вопроса и задачу.
Число грузовых автомашин, проезжающих по шоссе, на котором стоит бензоколонка, относится к числу легковых машин, проезжающих по тому же шоссе как 3:2. Вероятность того, что будет заправляться грузовая машина, равна 0,1; для легковой машины эта вероятность равна 0,2. К бензоколонке подъехала для заправки машина. Найти вероятность того, что это грузовая машина.
Имеются три заготовки для одной и той же детали. Вероятность изготовления стандартной детали из каждой заготовки равна 0,9. СВ Х – количество заготовок, оставшихся после изготовления первой стандартной детали.
В пятиблочном радиоприемнике (все блоки различные) перегорел один блок. Для устранения неисправности наудачу взятый блок заменяется исправным блоком, после чего проверяется работа приемника. СВ Х – число замененных блоков.
В задачах 121 – 150 дана плотность распределения вероятности р(х).
Требуется: 1) определить значение параметра а;
2) найти функцию распределения F(x);
3) найти математическое ожидание М(Х) и дисперсию D(Х);
4) построить графики р(х) и F(x).
В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .
Требуется:
1) записать , ;
2) найти ;
3) найти .
№ задачи
152
3,5
1,2
2,2
4,2
2,1
В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.
Требуется:
1)построить полигон и гистограмму частостей (относительных частот) СВ Х;
2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сде- лать предварительный выбор закона распределения;
3) вычислить выборочную среднюю и исправленное среднее квадратическое отклонение s;
4) записать гипотетичную функцию распределения и плотность распределения;
5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;
6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .
182. Даны результаты исследования 100 напыленных образцов на прочность напыленного слоя (в кг/мм2):
xi прочность |
2,0–2,2 |
2,2–2,4 |
2,4–2,6 |
2,6–2,8 |
2,8–3,0 |
частота mi |
7 |
22 |
38 |
23 |
10 |
- 1329 просмотров