Контрольная работа №4 вариант 4 Чепелев Метельский МСФ ФИТР

Контрольная 4

Задачи  4 34 64 94 124 154 184

У сборщика 10 деталей, из них первого сорта 6, второго – 4. Какова вероятность того, что из 5 одновременно взятых деталей 3 окажутся первого сорта и 2 – второго сорта?

В специализированную больницу поступают в среднем 50% больных с заболеванием К, 30% – с заболеванием L, 20 % – с заболеванием M. Вероятность полного излечения болезни К равна 0,7; для болезней L и M. эти вероятности соответственно равны 0,8 и 0,9. Больной, поступивший в больницу, был выписан здоровым. Найти вероятность того, что этот больной страдал заболеванием К.

Вероятность выздоровления больного в результате применения нового способа лечения равна 0,98. Какова вероятность того, что из 100 больных, подвергшихся новому лечению, выздоровевших будет не менее 95.

Вероятность того, что в течение гарантийного срока телевизор потребует ремонта, равна 0,2. СВ Х – число телевизоров не выдержавших гарантийный срок из четырех приобретенных телевизоров.

В пятиблочном радиоприемнике (все блоки различные) перегорел один блок. Для устранения неисправности наудачу взятый блок заменяется исправным блоком, после чего проверяется работа приемника. СВ Х – число замененных блоков.

 

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:   1) определить значение параметра а;

                     2) найти функцию распределения F(x);

                     3) найти математическое ожидание М(Х) и дисперсию D(Х);

                     4) построить графики р(х) и F(x).

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

154

2,8

0,8

2,5

3,5

1,2

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сде-      лать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое     отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего     квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить     гипотезу о нормальном распределении СВ с помощью критерия Пирсона при     уровне значимости .

 

184. Даны результаты содержания фосфора  (6%) в 100 чугунных образцах:

xi содержание фосфора

0,1–0,2

0,2–0,3

0,3–0,4

0,4–0,5

0,5–0,6

частота mi

7

22

38

24

9

 

$12.00
Артикул: bntu_11_k4v4
Цена: $12.00