Контрольная работа №4 вариант 24 Чепелев Метельский МСФ ФИТР
КОНТРОЛЬНАЯ РАБОТА № 4
http://reshuzadachi.ru/node/214
24. В ящике 10 деталей, из которых 4 окрашены. Сборщик наудачу взял три детали. Найти вероятность того, что хотя бы одна из взятых деталей окрашена.
54. Радиолампа может принадлежать к одной из трех партий с вероятностями: 0,25; 0,25; 0,5. Вероятности того, что радиолампа проработает гарантийный срок для первой, второй и третьей партий соответственно равны 0,9; 0,8; 0,85. Найти вероятность того, что наугад взятая электролампа выдержит гарантийный срок.
84. Среди 100 изготавливаемых микросхем в среднем одна бракованная. Найти вероятность того, что в партии из 1000 микросхем будет не более двух бракованных.
В задачах 91-120 требуется для данной СВ Х:
1) составить закон распределения СВ;
2) найти математическое ожидание М(Х) и дисперсию D(X);
3) найти функцию распределения F(x).
114. Вероятность того, что в библиотеке необходимая студенту книга свободна, равна 0,6. В городе 4 библиотеки. СВ Х – число библиотек, которые посетит студент, чтобы взять нужную ему книгу
В задачах 121 – 150 дана плотность распределения вероятности р(х).
Требуется:
1) определить значение параметра а;
2) найти функцию распределения F(x);
3) найти математическое ожидание М(Х) и дисперсию D(Х);
4) построить графики р(х) и F(x).
144.
В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .
Требуется:
1) записать , ;
2) найти ;
3) найти .
№ задачи |
а |
|
|
|
|
174 |
2,3 |
0,7 |
3,0 |
3,6 |
0,5 |
В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.
Требуется:
1)построить полигон и гистограмму частостей (относительных частот) СВ Х;
2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;
3) вычислить выборочную среднюю и исправленное среднее квадратическое отклонение s;
4) записать гипотетичную функцию распределения и плотность распределения;
5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;
6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .
204. Даны диаметры втулок после шлифовки
Диаметр, мм |
40,1–40,2 |
40,2–40,3 |
40,3–40,4 |
40,4–40,5 |
40,5–40,6 |
частота mi |
9 |
26 |
34 |
24 |
7 |
- 1075 просмотров