Контрольная работа №4 вариант 14 Чепелев Метельский МСФ ФИТР
КОНТРОЛЬНАЯ РАБОТА № 4
Методичка
14. Устройство состоит из четырех элементов, из которых два изношены. При включении устройства включаются случайным образом два элемента. Какова вероятность того, что включенными будут неизношенные элементы?
44. На складе находятся детали, изготовленные на двух заводах. Объем продукции первого завода в четыре раза больше объема продукции второго. Вероятность брака на первом заводе 0,05; на втором – 0,01. Наудачу взятая деталь оказалась бракованной. Какова вероятность того, что деталь изготовлена первым заводом?
74. Прибор состоит из пяти узлов. Вероятность безотказной работы в течение смены каждого узла равна 0,8. Причем работа каждого узла необходима для работы прибора в целом. Найти вероятность того, что в течение смены прибор выйдет из строя.
В задачах 91-120 требуется для данной СВ Х:
1) составить закон распределения СВ;
2) найти математическое ожидание М(Х) и дисперсию D(X);
3) найти функцию распределения F(x).
104. Три стрелка делают по одному выстрелу в мишень. Вероятности попадания в мишень для первого, второго и третьего стрелков соответственно равны 0,5; 0,6; 0,6. СВ X – количество попаданий в мишень.
В задачах 121 – 150 дана плотность распределения вероятности р(х).
Требуется:
1) определить значение параметра а;
2) найти функцию распределения F(x);
3) найти математическое ожидание М(Х) и дисперсию D(Х);
4) построить графики р(х) и F(x).
В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .
Требуется:
1) записать , ;
2) найти ;
3) найти .
№ задачи
а
164
8,5
4,7
5,2
10,2
6,3
В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.
Требуется:
1)построить полигон и гистограмму частостей (относительных частот) СВ Х;
2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;
3) вычислить выборочную среднюю и исправленное среднее квадратическое отклонение s;
4) записать гипотетичную функцию распределения и плотность распределения;
5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;
6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .
194. Даны размеры внутреннего диаметра гайки (в мм):
xi
диаметр
(в мм)
10,00–10,02
10,02–10,04
10,04–10,06
10,06–10,08
10,08–10,10
частота mi
9
16
47
21
7
- 1211 просмотров