Контрольная работа №4 вариант 1 Чепелев Метельский МСФ ФИТР

http://reshuzadachi.ru/node/214

КОНТРОЛЬНАЯ РАБОТА № 4

1. Для сигнализации о пожаре установлены три независимо работающих устройства. Вероятности того, что при пожаре сработает первое, второе и третье устройства соответственно равны 0,9; 0,7; 0,85. Какова вероятность того, что при пожаре сработает хотя бы одно устройство.

31. В ящике содержится 12 деталей, изготовленных на заводе № 1, 20 деталей – на заводе № 2 и 18 деталей – на заводе № 3. Вероятность того, что деталь, изготовленная на заводе № 1, отличного качества, равна 0,9; для деталей, изготовленных на заводах № 2 и № 3, эти вероятности соответственно равны 0,6 и 0,9. Найти вероятность того, что извлеченная наудачу деталь окажется отличного качества.

61. В телевизионной студии 4 камеры. Для каждой камеры вероятность того, что она включена в данный момент, равна 0,8. Найти вероятность того, что в данный момент включено не менее двух камер.

 

В задачах 91-120 требуется для данной СВ Х:

1) составить закон распределения СВ;

2) найти математическое ожидание М(Х) и дисперсию D(X);

3) найти функцию распределения F(x).

 

91. В партии из шести изделий имеются два бракованных. Наудачу взято три изделия. СВ Х – количество стандартных изделий среди трех взятых изделий.

В задачах 121 – 150 дана плотность распределения вероятности р(х).

Требуется:

1) определить значение параметра а;

2) найти функцию распределения F(x);

3) найти математическое ожидание М(Х) и дисперсию D(Х);

4) построить графики р(х) и F(x).

 

В задачах 151-180 СВ Х распределена по нормальному закону с математическим ожиданием а и средним квадратическим отклонением .

Требуется:

1) записать , ;

2) найти ;

3) найти .

 

№ задачи

а

 

 

 

 

151

2,8

0,6

2,1

3,0

1,8

 

В задачах 181–210 дан интервальный статистический ряд распределения частот экспериментальных значений случайной величины Х.

Требуется:

1)построить полигон и гистограмму частостей (относительных частот) СВ Х;

2) по виду полигона и гистограммы и, исходя из механизма образования СВ, сделать предварительный выбор закона распределения;

3) вычислить выборочную среднюю  и исправленное среднее квадратическое отклонение s;

4) записать гипотетичную функцию распределения и плотность распределения;

5) найти доверительные интервалы для математического ожидания и среднего квадратического отклонения при доверительной вероятности ;

6) найти теоретические частоты нормального закона распределения и проверить гипотезу о нормальном распределении СВ с помощью критерия Пирсона при уровне значимости .

 

181. Даны результаты испытания стойкости 200 удлиненных сверл диаметра 4 мм (в часах):

xi

стойкость сверла

3–3,2

3,2–3,4

3,4–3,6

3,6–3,8

3,8–4

частота mi

16

50

70

44

20

 

$12.00
Артикул: bntu_11_k4v1
Цена: $12.00