Недорого на заказ контрольные для заочников МИИТ
Задания к контрольной работе № 3
300. Точка совершает гармонические колебания с периодом 2 с. Амплитуда колебания 10 см. Найти смещение, скорость и ускорение точки спустя 0,2 с после ее прохождения через положение равновесия. Начало колебания связано с положением равновесия.
301. Спиральная пружина под действием подвешенного к ней груза растянулась на 6,5 см. Если груз оттянуть вниз, а затем отпустить, то он начнет колебаться вдоль вертикальной линии. Определить период колебания груза.
302. Пружинный маятник совершает гармонические колебания с амплитудой смещения 0,04 м. При смещении 0,03 м сила упругости равна 9 10-5
Н. Определить потенциальную и кинематическую энергии, соответствующие данному смещению и полную энергию маятника.
304. Чему равно отношение кинетической энергии точки, совершающей гармонические колебания, к ее потенциальной энергии для момента времени t=T/12, где Т - период колебаний.
305. Волна распространяется по прямой со скоростью 20 м/с. Две точки, находящиеся на этой прямой на расстоянии 12м и 15м от источника волн, колеблются с разностью фаз 0,75л. Определить длину волны и период колебания.
306. Найти смешение от положения равновесия точки, отстоящей от источника колебаний на расстоянии АЛ2, для момента времени Т/6. Амплитуда колебания 0,05 м.
307. Определить скорость распространения волн в упругой среде, если разность фаз колебаний двух точек, отстоящих друг от друга на 15 см, равна
л/2. Частота колебаний 25 Гц.
308. Самолет, летящий со скорость 300 м/с, является источником звуковых волн с частотой 1000 Гц. На сколько отличается частота звука, воспринимаемого наблюдателем при удалении от него этого самолета?
309. Поезд проходит мимо станции со скоростью 40 м/с. Частота тона гудка электровоза равна 300 Гц. Определить кажущуюся частоту тона для человека, стоящего на платформе в случае приближения поезда.
310. Плоская электромагнитная волна частотой 106 Ад, имеющая амплитуду напряженности электрического поля 120 В/м, распространяется в воздухе. Записать уравнение электромагнитной волны с числовыми коэффициентами, положив начальную фазу равную нулю.
311. В однородной и изотропной среде с диэлектрической проницаемостью s = 3 и магнитной проницаемостью ^ = 1 распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля в ней 10 В/м. Найти фазовую скорость волны.
312. Колебательный контур состоит из конденсатора и катушки индуктивности. Определить частоту колебаний, возникающих в контуре, если максимальная сила тока в катушке индуктивности 1,2 А, максимальная разность потенциалов на обкладках конденсатора 1200 В, полная энергия контура 1,1 мДж.
313. Колебательный контур, состоящий из катушки индуктивности и конденсатора емкостью 1 пФ, имеет частоту колебаний 5 МГц. Найти максимальную силу тока, протекающего по катушке, если полная энергия контура 0,5 мкДж.
314. Колебательный контур радиоприемника состоит из катушки индуктивностью 1 мГн и переменного конденсатора, емкость которого может изменяться в пределах от 9,7 до 92 пФ. В каком диапазоне длин волн может принимать радиостанции этот приемник?
315. Входной контур радиоприемника состоит из катушки индуктивностью
2 мГн и плоского конденсатора с площадью пластин 10 см2 и расстоянием между ними 2 мм. Пространство между пластинами заполнено слюдой с диэлектрической проницаемостью 7. На какую длину волны настроен радиоприемник?
316. В однородной изотропной немагнитной среде с диэлектрической проницаемостью равной 3 распространяется плоская электромагнитная волна. Амплитуда напряженности электрического поля волны 10 В/м. Найти амплитуду напряженности магнитного поля и фазовую скорость волны.
317. Плоская электромагнитная волна распространяется в вакууме. Амплитуда напряженности электрического поля волны 50 мВ/м. Найти амплитуду напряженности магнитного поля и среднее за период колебаний значение плотности потока энергии.
318. Резонанс в колебательном контуре с конденсатором 10-6 Ф наступает при частоте 4000 Гц. Если параллельно первому конденсатору подключить второй конденсатор, то резонансная частота становится равной 200 Гц. Определить емкость второго конденсатора.
319. На какой частоте суда передают сигнал бедствия SOS, если по международному соглашению длина радиоволны должна быть 600 м?
320. Расстояние от щелей до экрана в опыте Юнга равно 1 м. Определить расстояние между щелями, если на отрезке длиной 1 см укладывается 10 темных интерференционных полос. Длина волны монохроматического света равна 0,7мкм.
321. На мыльную пленку (показатель преломления равен 1,33) падает монохроматический свет с длиной волны 0,6 мкм (желтый свет) под углом 45°. При какой наименьшей толщине пленки отраженные лучи будут окрашены в желтый цвет? При какой наименьшей толщине пленки она будет казаться темной? Что будет с окраской пленки, если менять угол падения?
322. В воздухе, находится тонкая планка из вещества с показателем преломления равным 1,4. Толщина пленки 0,25 мкм. На пленку падает нормально монохроматический свет, при этом отраженные лучи максимально ослаблены в результате интерференции. Какова длина волны этого света?
323. На щель шириной 0,1 мм нормально падает параллельный пучок света от монохроматического источника (длина волны равна 0,5 мкм). Определить ширину центрального максимума в дифракционной картине, наблюдаемой на экране, удаленном от щели на расстояние 3м.
324. На дифракционную решетку, содержащую 250 штрихов на 1мм. падает нормально свет с длиной волны 0,6мкм. Найти общее число дифракционных максимумов, которые дает эта решетка. Определить угол, под которым наблюдается последний дифракционный максимум.
325. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние между атомными плоскостями равно 280 пм. Под углом 65° к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны рентгеновского излучения.
326. Чему равен угол между главными плоскостями двух николей, если интенсивность естественного света, прошедшего через эту систему, уменьшилась в 5,4 раза? Считать, что каждый николь поглощает и отражает - 14% падающего на него света.
327. Луч света переходит из кварца в жидкость. Отраженный луч максимально поляризован при угле падения, равном 40°. Определить показатель преломления жидкости и скорости распространения света в ней.
328. Между двумя параллельными николями помещают кварцевую пластинку толщиной 1 мм, вырезанную параллельно оптической оси. При этом плоскость поляризации монохроматического света, падающего на поляризатор, повернулась на угол 20°. При какой минимальной толщине пластинки свет не пройдет через анализатор?
329. На грань кристалла каменной соли падает параллельный пучок рентгеновского излучения. Расстояние между атомными плоскостями равно 280 пм. Под углом 65° к атомной плоскости наблюдается дифракционный максимум первого порядка. Определить длину волны рентгеновского излучения.
340. Температура абсолютно черного тела равна 2000 К. Определить длину волны, на которую приходится максимум спектра энергии излучения, и спектральную плотность энергетической светимости для этой длины волны.
341. Определить температуру и энергетическую светимость абсолютно черного тела, если максимум энергии спектра излучения приходится на длину волны 600 нм.
342. На поверхность калия падает ультрафиолетовое излучение с длиной волны 150 нм. Определить максимальную кинетическую энергию (в электрон- вольтах) фотоэлектронов и задерживающую разность потенциалов.
343. Фотон с энергией 10 эВ выбивает электроны из серебряной пластины. Определить импульс, полученный пластиной, если принять, что направления импульсов фотона и фотоэлектрона перпендикулярны поверхности пластины.
344. Определить угол рассеяния фотона, испытавшего соударение со свободным электроном, если изменение длины волны при рассеянии равно 3,62 пм.
345. Определить импульс электрона отдачи при эффекте Комптона, если фотон с энергией, равной энергии покоя электрона, был рассеян на угол 180°.
346. Фотон с энергией 0,25 МэВ рассеялся на свободном электроне. Энергия рассеянного фотона равна 0,2 МэВ. Определить угол рассеяния фотона.
347. Угол рассеяния фотона равен 90°. Угол отдачи электрона равен 30°. Определить энергию падающего фотона.
348. Пучок монохроматического света с длиной волны Х=663 нм падает нормально на зеркальную плоскую поверхность. Поток энергии Фе=0,6 Вт. Определить силу давления, испытываемую этой поверхностью, а также число фотонов, падающих на нее за время 5 с.
349. Определить давление солнечного излучения на зачерненную пластинку, расположенную перпендикулярно солнечным лучам и находящуюся вне земной атмосферы на среднем расстоянии от Земли до Солнца.
350. На грань кристалла никеля падает параллельный пучок электронов. Кристалл поворачивают так, что угол скольжения д изменяется. Когда этот угол делается равным 64°, наблюдается максимальное отражение электронов, соответствующее дифракционному максимуму первого порядка. Принимая расстояние между атомными плоскостями кристалла равным 200 пм, определить длину волны де Бройля электронов и их скорость.
351. Заряженная частица, ускоренная разностью потенциалов U = 200 B, имеет длину волны де Бройля 2,02 пм. Найти массу частицы, если ее заряд численно равен заряду электрона.
352. Найти длину волны де Бройля для атома водорода, движущегося при температуре 293 К с наиболее вероятной скоростью.
353. Определить неопределенность координаты электрона, движущегося в атоме водорода со скоростью 2,0-106м/с, если относительная неопределенность скорости равна 0,1. Сравнить полученную неопределенность с диаметром атома водорода, вычисленным по теории Бора для основного состояния, и указать, применимо ли понятие траектории в данном случае.
354. Электрон с кинетической энергией 10 эВ находится в металлической пылинке диаметром 1 мкм. Оценить (в процентах) относительную неопределенность скорости электрона.
355. Если допустить, что неопределенность координаты движущейся частицы равна дебройлевской длине волны, то какова будет относительная неопределенность импульса этой частицы?
356. Определить радиус, частоту и скорость обращения электрона для первой орбиты по теории Бора, а также энергию ионизации.
357. Найти наибольшую и наименьшую длины волн в видимой области спектра излучения атома водорода.
358. Вычислить по теории Бора радиус второй стационарной орбиты и скорость электрона на этой орбите для атома водорода.
359. Атом водорода в основном состоянии поглотил квант света с длиной волны 0,1215 мкм. Определить радиус электронной орбиты возбужденного атома водорода.
360. Определить постоянную распада, среднее время жизни ядра и число
131
ядер радиоактивного изотопа йода 531, распавшегося в течение суток, если первоначальная масса йода была 10 мг.
361. Определить возраст древних деревянных предметов, если удельная
активность изотопа 16 С в них составляет 3/5 удельной активности этого же изотопа в только что срубленных деревьях.
362. Активность некоторого радиоактивного препарата уменьшается в 2,5 раза за 7 суток. Найти его период полураспада и среднюю продолжительность жизни ядра.
363. Счетчик Гейгера, установленный вблизи препарата радиоактивного изотопа серебра, при первом измерении регистрировал 5200 а-частиц в минуту, а через сутки только 1300. Определить период полураспада изотопа.
364. Мощность двигателя атомного судна составляет 15 МВт, его КПД равен 30%. Определить месячный расход ядерного горючего при работе этого двигателя. Считать, что при каждом акте деления ядра урана-235 выделяется энергия 200 МэВ.
365. Найти электрическую мощность атомной электростанции, расходующей 0,1 кг урана-235 в сутки, если КПД станции равен 16%. Считать энергию, выделяющуюся при одном акте деления ядра урана-235, равной 200 МэВ.
366. Определить массовый расход урана-235 в ядерном реакторе атомной электростанции. Тепловая мощность электростанции равна 10 МВт, КПД электростанции составляет 20%. Считать, что при каждом акте деления ядра урана-235 выделяется энергия 200 МэВ.
367. Найти мощности экспозиционной, поглощенной и эквивалентной доз на расстоянии 1,5 м от препарата радиоактивного кобальта-60 массой 1 мг.
368. Определить экспозиционную, поглощенную и эквивалентную дозы от
0, 1 г препарата радия-226 за 20 минут на расстоянии 1 м.
369. Найти экспозиционную, поглощенную и эквивалентную дозы для биологической ткани при облучении в течении 10 минут препаратом иридия- 192 массой 5 мг, находящимся на расстоянии 20 см.
370. За неделю из стакана испарилось 50 г воды. Сколько в среднем молекул вылетало с поверхности воды за 1с.
371. В баллоне емкостью 15 л находится смесь, содержащая 10 г водорода, 54 г водяного пара и 60 г окиси углерода. Температура смеси 27°С. Определить давление.
372. На сколько изменится атмосферное давление при подъеме на высоту 100м над уровнем моря, если давление на уровне моря равно 100 кПа. Считать, что температура равна 290К и не изменяется с высотой.
373. На какой высоте над поверхностью Земли атмосферное давление вдвое меньше, чем на поверхности? Считать, что температура воздуха равна 290 К и не изменяется с высотой.
374. На сколько процентов отличается давление воздуха в шахте глубиной 1 км от давления на поверхности. Температуры считать одинаковыми и равными 27°С.
375. В ходе цикла Карно рабочее вещество получает от теплоотдатчика количество теплоты 300 кДж. Температуры теплоотдатчика и теплоприемника равны соответственно 480 К и 280 К. Определить термический КПД цикла и работу, совершаемую рабочим веществом за цикл.
376. Идеальная тепловая машина работает по циклу Карно, термический КПД которого 40 %. Температура теплоприемника 0°С. Найти температуру теплоотдатчика и работу изотермического сжатия, если работа изотермического расширения 8 Дж.
377. В результате изохорического нагревания воздуха массой 1 г давление газа увеличилось в 2 раза. Определить изменение энтропии газа.
378. Найти изменение энтропии при изобарическом расширении гелия массой 8 гот объема 10 лдо объема 25 л.
Найти изменение энтропии при изобарическом расширении гелия массой 8 г от объема 10 л до объема 25 л.
379. Кусок льда массой 2 кг с начальной температурой - 10°С в результате нагревания расплавлен. Найти приращение энтропии системы.