Физика | контрольные работы | решение задач на заказ|

Контрольные работы по физике на заказ, методички, алгоритмы решения задач, домашние контрольные, ИДЗ

Элементы физики твердого тела - ТПУ

Элементы физики твердого тела: метод. указ. и индивид. задания для студентов ИДО, обучающихся по напр. 150700 «Машиностроение» / сост. Е.Н. Коростелева; Томский политехнический университет. - Томск: Изд-во Томского политехнического университета, 2013. - 31 с.

Физические основы электродинамики, волновая оптика КГУ

На заказ физика недорого, правильно

ФИЗИКА Часть 2 (Физические основы электродинамики, волновая оптика)

Методические указания и контрольные задания для студентов заочной формы обучения

Воронцов Борис Сергеевич Новгородова Татьяна Назаровна Солодовников Вячеслав Михайлович

 

Контрольная работа № 2
Таблица выбора вариантов индивидуального задания
Вариант Номера задач
1 1 11 21 31 41 51 61 71 81 91 101 111
2 2 12 22 32 42 52 62 72 82 92 102 112
3 3 13 23 33 43 53 63 73 83 93 103 113
4 4 14 24 34 44 54 64 74 84 94 104 114
5 5 15 25 35 45 55 65 75 85 95 105 115
6 6 16 26 36 46 56 66 76 86 96 106 116
7 7 17 27 37 47 57 67 77 87 97 107 117
8 8 18 28 38 48 58 68 78 88 98 108 118
9 9 19 29 39 49 59 69 79 89 99 109 119
10 10 20 30 40 50 60 70 80 90 100 110 120

1. Электростатическое поле создано бесконечной заряженной плоскостью с поверхностной плотностью заряда а = 1 мкКл/ м2 и точечным зарядом q = -2 мкКл, находящимся на расстоянии a = 0,5 м от плоскости. Определить напряженность поля в точке, находящейся на расстоянии г1 = 0,5 м от плоскости и г2= 0,5 м от заряда.

2. Электрическое поле создано двумя концентрическими проводящими сферами радиусами R1 = 10 см и R2 = 90 см, несущими заряды q1 = 2 нКл и
q2 = 1 нКл. Определить напряженность поля в точках на расстояниях г1 = 80 см, и г2 = 1 м от центра сфер.
3. Электрическое поле создано двумя параллельными бесконечными плоскостями с поверхностными плотностями зарядов 150 мкКл/м2 и 240 мкКл/м2, соответственно. Определить напряженность поля между плоскостями, справа и слева от плоскостей.
4. Электрическое поле создано двумя бесконечными параллельными нитями, заряженными с линейными плотностями т1 = 0,1 мкКл/м, т 2 = 0,01 мкКл/м, находящимися на расстоянии а = 10 см друг от друга. Определить напряженность поля в точке на расстоянии г1 = 8 см от первой и г2 = 12 см от второй нити.
5. Электрическое поле создано бесконечной плоскостью с поверхностной плотностью заряда а = 200 нКл/ м и бесконечной нитью с линейной плотностью т = 0,1 мкКл/м, проходящей параллельно плоскости на расстоянии а = 0,2 м. Определить напряженность поля в точке на расстоянии г1 = 0,5 м от плоскости и г2 = 0,3 м от нити.
6. Электрическое поле создано бесконечной заряженной плоскостью с поверхностной плотностью заряда а = -1 мкКл/ м2 и точечным зарядом q = -2 мкКл, находящимся на расстоянии a = 0,5 м от плоскости. Определить напряженность поля в точке, расположенной на расстоянии г1 = 0,2 м от плоскости и
г2 = 0,5 м от заряда.
7. Электрическое поле создано бесконечной заряженной нитью с линейной плотностью заряда т = 100 мкКл/м и заряженной сферой радиусом R = 0,2 м, с зарядом q = -500 мкКл. Расстояние между центром сферы и нитью а = 1 м. Определить напряженность поля в точке, расположенной на расстоянии г1=0,2 м от нити и г2 = 1,2 м от центра сферы.
8. Электрическое поле создано двумя концентрическими сферами радиусами R1=10 см и R2=50 см, несущими заряды q1=2 нКл и q2=-1 нКл. Определить напряженность поля в точках на расстояниях г1=0,3 м, г2 =1,4 м, от центра сфер.
9. Электрическое поле создано двумя заряженными бесконечными нитями, лежащими в параллельных плоскостях и скрещенных под прямым углом. Линейные плотности зарядов нитей равны: т1 = -0,2 мкКл/м, т 2 = 0,2 мкКл/м. Найти напряженность поля в точке, расположенной на расстоянии г1 = 13 см от первой и г2 = 5 см от второй нити. Расстояние между нитями d = 13 см.
10. Электрическое поле создано бесконечной плоскостью с поверхностной плотностью заряда а = - 200 нКл/ м и заряженной сферой радиусом R = 20 см, находящейся на расстоянии 0,5 м от плоскости. Заряд сферы q = 150 нКл. Определить напряженность поля в точке, одинаково удаленной от плоскости и центра сферы.

11. Вдоль силовой линии однородного электрического поля движется протон. В точке поля с потенциалом = 300 В протон имел скорость vj = 0,1
Мм/с. Определить: 1) потенциал ф2 точки поля, в которой скорость протона
возрастает в 3 раза; 2) работу, которую при этом совершило поле.
12. Электрон, летевший горизонтально со скоростью v=1,6 Мм/с, влетел в однородное электрическое поле с напряженностью Е=90 В/см, направленной вертикально вверх. Какова будет по модулю и направлению скорость электрона через 1 нс? Какую работу совершило при этом поле?
13.  Протон, начальная скорость которого равна 100 км/с, влетел в однородное электрическое поле в направлении линий напряженности. Какой путь должен пройти протон, чтобы его скорость удвоилась? Какую работу совершит при этом поле? Напряженность поля Е=300 В/см.
14. Пройдя ускоряющую разность потенциалов U=600 кВ, а -частица, летевшая со скоростью 5,4 Мм/с, увеличила свою скорость на 3,9 Мм/с. Заряд а - частицы равен 3,2 • 10-19 Кл. Определить: 1) работу, совершенную полем при разгоне частицы; 2) удельный заряд а - частицы (отношение заряда к массе), считая массу неизвестной.
15. Пылинка массой m=1 пг, несущая на себе пять избыточных электронов, прошла в вакууме ускоряющую разность потенциалов 3 МВ. Найти: 1) изменение ее кинетической энергии; 2) работу сил поля; 3) изменение скорости пылинки. Начальная скорость пылинки 9 м/с.
16. Разность потенциалов между катодом и анодом электронной лампы равна 90 В, а расстояние между ними 24 мм. С каким ускорением движется электрон от катода к аноду? Какова скорость электрона в момент удара об анод? За какое время электрон пролетает расстояние от катода до анода? Какую работу при этом совершит электрическое поле лампы? Поле считать однородным.
17. Какой путь пройдет электрон в однородном электрическом поле напряженностью Е = 200 кВ/м вдоль силовой линии за время t = 1 нс, если его начальная скорость была равна нулю? Какими скоростью и кинетической энергией будет обладать электрон в конце заданного интервала времени? Какую работу при этом совершит электрическое поле?
18. Вдоль силовой линии однородного электрического поля движется а - частица. В точке поля с потенциалом фг = 120 В а -частица имела скорость vj = 50 км/с. Определить: 1) потенциал ф2 точки поля, в которой ее скорость
возрастет в 2 раза; 2) работу, которую при этом совершило поле.
19.  Электрон с начальной скоростью v0 = 3 Мм/с влетел в однородное электрическое поле напряженностью Е =150 В/м. Вектор начальной скорости перпендикулярен линиям напряженности электрического поля. Найти: 1) силу F, действующую на электрон; 2) ускорение, приобретенное электроном; 3) скорость электрона через t = 0,1 мкс; 4) работу, совершенную при этом полем.
20. Протон, летевший горизонтально со скоростью v = 0,6 Мм/с, влетел в однородное электрическое поле с напряженностью Е = 120 В/см, направленной вертикально вверх. Какова будет по модулю и направлению скорость протона через 1 мкс? Какую работу совершит поле при таком изменении скорости?

В задачах 21-30. Четыре конденсатора образуют цепь, показанную на рисунке. Разность потенциалов на концах цепи равна 6 В, емкости конденсаторов Сь С2, С3, и С4 равны, соответственно, 1, 2 , 3 и 4 мкФ. Определить: 1) общую емкость цепи, 2) разность потенциалов на каждом конденсаторе, 3) заряд на каждом конденсаторе, 4) энергию электрического поля каждого конденсатора и общую энергию системы.
31. Батарея, состоит из трех включенных параллельно одинаковых источников тока с ЭДС s = 12,2 В и внутренним сопротивлением г = 3 Ом каждый. Соединенная с ней внешняя электрическая цепь имеет сопротивление R = 24 Ом. Определить: 1) полезную мощность; 2) наибольшую мощность, которую можно получить во внешней цепи.
32.  ЭДС источника тока s = 2 В, внутреннее сопротивление г = 1 Ом. Определить силу тока, если внешняя цепь потребляет мощность Р = 0,75 Вт. Какую наибольшую мощность можно получить во внешней цепи?
33. Определить силу тока короткого замыкания I кз для аккумуляторной батареи, если при токе нагрузки I1 = 5 А она отдает во внешнюю цепь мощность Р1 = 9,5 Вт, а при токе нагрузки в 8 А - Р2 = 14,4 Вт. Какую наибольшую мощность можно получить во внешней цепи?

34. Батарея, состоит из трех одинаковых включенных последовательно источников тока с ЭДС s = 2,2 В и внутренним сопротивлением г = 1 Ом каждый. Соединенная с ней внешняя электрическая цепь имеет сопротивление R = 48 Ом. Определить: 1) полезную мощность; 2) наибольшую мощность, которую можно получить во внешней цепи.
35. Батарея состоит из пяти последовательно соединенных элементов с ЭДС s = 1,4 В и с внутренним сопротивлением г = 0,3 Ом каждый. При каком сопротивлении внешней нагрузки полезная мощность равна Р = 8 Вт ? Какую наибольшую мощность можно получить во внешней цепи?
36. Аккумулятор с внутренним сопротивлением г = 0,08 Ом при токе нагрузки I1 = 4 А отдает во внешнюю цепь мощность Р1 = 8 Вт. Какую мощность
Р2 отдаст он во внешнюю цепь при токе нагрузки I2 = 6 А? Какую наибольшую мощность можно получить во внешней цепи?
37. Элемент питания замыкают сначала на внешнее сопротивление R1 = 2
Ом, а затем на внешнее сопротивление R2 = 0,5 Ом. Найти ЭДС элемента и его внутреннее сопротивление, если известно, что в каждом из этих случаев, мощность, выделяемая во внешней цепи, одинакова и равна 2,54 Вт. Какую наибольшую мощность можно получить во внешней цепи?
38. Два источника тока с ЭДС 24 В и с внутренними сопротивлениями 2 Ом и 3 Ом соединены параллельно. При каком сопротивлении внешней нагрузки полезная мощность равна 64 Вт? Какую наибольшую мощность можно получить во внешней цепи?
39. Лампочка и реостат, включенные последовательно, присоединены к источнику тока с внутренним сопротивлением 2 Ом. Напряжение на зажимах лампочки равно 40 В, сопротивление реостата равно 10 Ом. Внешняя цепь потребляет мощность 120 Вт. Найти силу тока в цепи. Какую наибольшую мощность можно получить во внешней цепи?
40. Батарея состоит из трех параллельно соединенных источников тока с ЭДС s = 12 В и с внутренним сопротивлением г = 2 Ом каждый. При каком сопротивлении внешней нагрузки полезная мощность равна 32 Вт ? Какую наибольшую мощность можно получить во внешней цепи?
В задачах 41-50. С использованием правил Кирхгофа, найти силы токов на всех участках цепи и разность потенциалов между узлами.
В задаче известно: Sj = 2,5 В, s 2 = 2,2 В, s 3 = 3,0 В, rj = г2= г3= 0,2 Ом, R = 4,7 Ом.

51. Два бесконечно длинных прямолинейных проводника с токами 6 А и 8 А скрещены перпендикулярно друг другу. Определить индукцию и напряженность магнитного поля на середине кратчайшего расстояния между проводниками, равного 20 см.
52. По двум бесконечно длинным прямолинейным параллельным проводникам, расстояние между которыми равно 15 см, в одном направлении текут токи 4 А и 6 А. Определить расстояние от проводника с меньшей силой тока до геометрического места точек, в которых индукция магнитного поля равна нулю.
53. По квадратной рамке течет ток силой I = 2 А. Напряженность магнитного поля в центре рамки равна H = 45 А/м. Определить периметр рамки.
54. По двум бесконечно длинным прямолинейным параллельным проводникам текут токи 5 и 10 А в одном направлении. Геометрическое место точек, в котором индукция магнитного поля равна нулю, находится на расстоянии 10 см от проводника с меньшей силой тока. Определить расстояние между проводниками.
55.  По кольцевому проводнику радиусом 10 см течет ток I1 = 4 А. Параллельно плоскости кольцевого проводника на расстоянии 2 см от его центра
проходит бесконечно длинный прямолинейный проводник, по которому течет ток I2 = 2 А. Определить индукцию и напряженность магнитного поля в центре кольца. Рассмотреть все возможные случаи.
56. Два круговых витка с током лежат в одной плоскости и имеют общий центр. Радиусы витков равны 12 и 8 см. Напряженность магнитного поля в центре витков равна 50 А/м, если токи текут в одном направлении, и нулю, если в противоположных. Определить силы токов, текущих по круговым виткам.
57. Бесконечно длинный прямолинейный проводник с током I1 = 3 А расположен на расстоянии 20 см от центра витка радиусом 10 см с током I2 = 1 А. Определить индукцию магнитного поля в центре витка для случаев, когда проводник: а) расположен перпендикулярно плоскости витка; б) находится в плоскости витка.
58. По квадратной рамке со стороной а = 0,2 м течет ток силой I = 4 А. Определить напряженность и индукцию магнитного поля в центре рамки.
59. По двум бесконечно длинным прямолинейным параллельным проводникам, расстояние между которыми 25 см, в противоположных направлениях текут токи 4 А и 6 А. Определить расстояние от проводника с большей силой тока до геометрического места точек, в которых индукция магнитного поля равна нулю.
60. По квадратной рамке со стороной а = 0,4 м течет ток, который создает в центре рамки магнитное поле напряженностью H = 45 А/м. Определить силу тока в рамке.
61. Электрон влетает в однородное магнитное поле с индукцией В = 25 мТл. Скорость электрона равна 350 м/с и составляет с линиями индукции угол 300. Определить радиус и шаг винтовой линии, по которой будет двигаться электрон.
62. Протон, имеющий скорость v = 5 км/с, влетает в однородное магнитное поле с индукцией В = 0,01 Тл. Вектор скорости протона направлен под углом 600 к линиям магнитной индукции. Определить силу, действующую на протон и путь, пройденный частицей по траектории за 10 мс.
63. Протон влетает в однородное магнитное поле с индукцией 0,1 Тл под углом 300 к линиям индукции. Определить сколько оборотов сделает протон за 2 минуты, если его скорость равна 10 км/с. Каков радиус траектории протона?
64. Заряженная частица движется в магнитном поле с индукцией В = 0,02 Тл по окружности со скоростью 200 м/с. Радиус окружности R = 0,1 м. Найти
заряд частицы, если ее кинетическая энергия равна 3,2 • 10-20 Дж.
65. Протон, пройдя ускоряющую разность потенциалов 104В, вылетел из протонной пушки и влетел в однородное магнитное поле с индукцией 0,1 Тл перпендикулярно линиям магнитной индукции. Определить радиус его траектории и период вращения.
66.  Электрон движется в магнитном поле с индукцией В=4 мТл по окружности радиусом R = 0,8 см. Какова кинетическая энергия электрона? За какое время электрон проходит четверть окружности?
67.  Электрон, ускоренный разностью потенциалов 1,5 кВ, влетел в однородное магнитное поле под углом 150 к вектору индукции В, модуль которого

равен 14 мТл. Найти шаг винтовой траектории электрона.
68. Электрон движется в однородном магнитном поле с индукцией В = 10 мТл по винтовой линии, радиус которой R = 1,5 см и шаг h = 10 см. Определить период обращения электрона и его скорость.
69. Заряженная частица с кинетической энергией 2 кэВ движется в однородном магнитном поле по окружности радиусом 4 мм. Определить силу, действующую на частицу со стороны поля.
70. Альфа- частица, прошедшая ускоряющую разность потенциалов U = 2 кВ, влетает в однородное магнитное поле с индукцией В = 3 мТл перпендикулярно линиям индукции. Найти силу, действующую на частицу, и радиус окружности, по которой она станет двигаться.
71. Круговой проводящий контур радиусом г = 5 см и током I = 1 А находится в магнитном поле, причем плоскость контура перпендикулярна направлению поля. Напряженность поля равна 10 кА/м. Определить: 1) работу, которую необходимо совершить, чтобы повернуть контур на 900 вокруг оси, совпадающей с диаметром контура и перпендикулярной к направлению поля; 2) среднюю ЭДС, индуцируемую в контуре, если поворот будет совершен за 6 секунд?
72. Круговой контур помещен в однородное магнитное поле так, что плоскость контура расположена под углом 300 к силовым линиям поля. Напряженность магнитного поля H = 2104 А/м. По контуру течет ток силой 2А. Радиус контура 2 см. Какую работу надо совершить, чтобы повернуть контур на 900 вокруг оси, совпадающей с диаметром контура и перпендикулярной к направлению поля? Какая средняя ЭДС индуцируется в контуре, если поворот будет совершен за 12 секунд?
73. В однородном магнитном поле с индукцией В = 0,01 Тл находится прямой провод длиной L = 8 см, расположенный перпендикулярно линиям индукции. По проводу течет ток I = 2 A. Под действием сил поля за две секунды провод переместился на расстояние S = 5 см. Найти 1) работу сил поля; 2) разность потенциалов, индуцированную на концах провода.
74. Плоский контур, площадь которого S = 300 см , находится в однородном магнитном поле с индукцией В = 0,01 Тл. Плоскость контура перпендикулярна линиям индукции. В контуре поддерживается неизменный ток I = 10 А. Определить работу А внешних сил по перемещению контура с током в область пространства, в которой магнитное поле отсутствует. Какая средняя ЭДС индуцируется в контуре, если это перемещение будет совершено за 2 секунды?
75. По проводу, согнутому в виде квадрата со стороной длиной а = 10 см, течет ток I = 20 А, сила которого поддерживается неизменной. Плоскость квадрата составляет угол а =200 c линиями индукции однородного магнитного поля (В=0,1Тл). Вычислить работу А, которую необходимо совершить для того, чтобы удалить провод за пределы поля. Какая средняя ЭДС индуцируется в проводе, если перемещение будет совершено за 2с?
76. По кольцу радиусом R = 10 см, сделанному из тонкого гибкого провода, течет ток I = 100 A. Перпендикулярно плоскости кольца возбуждено магнитное поле с индукцией В = 0,1 Тл, по направлению совпадающей с индукцией В1 собственного магнитного поля кольца. Определить работу А внешних
сил, которые, действуя на провод, деформировали его и придали ему форму квадрата. Сила тока при этом поддерживалась неизменной. Работой против упругих сил пренебречь. Определить среднюю ЭДС, возникшую при этом в замкнутом контуре, если изменение конфигурации произошло за 5 секунд?
77.  Виток, по которому течет ток I = 20 А, свободно установился в однородном магнитном поле с индукцией В = 0,016 Тл. Диаметр витка равен 10 см. Определить работу А, которую нужно совершить, чтобы повернуть виток 1) на угол п /2 относительно оси, совпадающей с диаметром, 2) на угол 2 п относительно этой же оси. Определить ЭДС в первом случае, если поворот был совершен за 3 секунды.
78. Прямой провод длиной L = 20 см с током I = 5 А, находящийся в однородном магнитном поле с индукцией В = 0,1 Тл, расположен перпендикулярно линиям магнитной индукции. Под действием сил поля проводник переместился на 2 см за 4 секунды. Определить: 1) работу сил поля; 2) разность потенциалов, возникшую на концах провода.
79. Квадратный проводящий контур со стороной l = 20 см и током I = 10 А свободно подвешен в однородном магнитном поле с индукцией В = 0,2 Тл. Определить: 1) работу, которую необходимо совершить, чтобы повернуть контур на 1800 вокруг оси, перпендикулярной направлению магнитного поля; 2) ЭДС, индуцированную в контуре, если поворот был совершен за 4 секунды.
80. В однородном магнитном поле с магнитной индукцией В = 0,2 Тл находится квадратный проводящий контур со стороной а = 20 см и током I = 10 А. Плоскость квадрата составляет с направлением поля угол 300. Определить работу удаления провода за пределы поля и ЭДС, возникшую в нем, если удаление было совершено за 7 секунд.
81. Соленоид содержит N = 1000 витков. Сила тока I в обмотке равна 1 А, магнитный поток Ф через поперечное сечение соленоида равен 0,1 мВб. Вычислить энергию магнитного поля внутри соленоида.
82. Сколько витков имеет катушка, индуктивность которой L = 1 мГн, если при токе I = 1 А магнитный поток сквозь сечение катушки Ф = 2 мкВб ?
83. Обмотка электромагнита имеет сопротивление R = 15 Ом и индуктивность L = 0,3 Гн. Определить время, за которое в обмотке выделится количество теплоты, равное энергии магнитного поля в сердечнике, если обмотка магнита находится под постоянным напряжением.
84. Сила тока I в обмотке соленоида, содержащего N=1500 витков, равна 5 А. Магнитный поток Ф через поперечное сечение соленоида составляет 200 мкВб. Определить энергию магнитного поля в соленоиде.
85. Катушка длиной 20 см и диаметром D = 3 см имеет 400 витков. По катушке течет ток I = 2 А. Найти индуктивность L катушки и магнитный поток Ф, пронизывающий ее поперечное сечение.
86. Сколько витков проволоки диаметром 0,6 мм имеет однослойная обмотка катушки, индуктивность которой L=1 мГн и диаметр D = 4 см? Витки плотно прилегают друг к другу.
87. Соленоид индуктивностью L = 4 мГн содержит N = 600 витков. Площадь поперечного сечения соленоида S = 20 см . Определить магнитную ин
дукцию поля внутри соленоида, если сила тока, протекающего по его обмотке, равна 6 А.
88. Определить, сколько витков проволоки, вплотную прилегающих друг к другу, диаметром 0,5 мм с изоляцией ничтожной толщины надо намотать на картонный цилиндр диаметром 1,5 см, чтобы получить однослойную катушку индуктивностью L = 100 мкГн?
89. Катушка, намотанная на немагнитный цилиндрический каркас, имеет N1 = 750 витков и индуктивность L1 = 25 мГн. Чтобы увеличить индуктивность катушки до L2 = 36 мГн, обмотку с катушки сняли и заменили обмоткой из более тонкой проволоки с таким расчетом, чтобы длина катушки осталась прежней. Определить число N2 витков катушки после перемотки.
2
90. Соленоид длиной 50 см и площадью поперечного сечения S = 2 см имеет индуктивность L = 0,2 мкГн. При каком токе I объемная плотность энергии магнитного поля внутри соленоида w0 = 1 мДж/м ?
91. На пути одного из интерферирующих лучей помещается стеклянная пластинка толщиной 12 мкм. Определить, на сколько полос сместится интерференционная картина, если показатель преломления стекла n = 1,5; длина волны света X = 750 нм и свет падает на пластинку нормально.
92. Какой должна быть толщина пластинки, изготовленной из стекла с показателем преломления n = 1,6, если при введении пластинки на пути одного из двух интерферирующих лучей интерференционная картина смещается на четыре полосы ? Длина волны падающего света X = 550 нм.
93. Во сколько раз в опыте Юнга (интерференция от двух точечных источников) нужно изменить расстояние до экрана, чтобы 5-я светлая полоса новой интерференционной картины оказалась на том же расстоянии от нулевой, что и 3-я светлая полоса в прежней картине.
94. В опыте Юнга (интерференция от двух точечных источников) вначале использовали свет с длиной волны Xj = 600 нм, а затем с X2 . Какова длина волны во втором случае, если 7-я светлая полоса в первом случае совпадает с 10-й темной во втором?
95. На мыльную пленку (n = 1,33), находящуюся в воздухе, падает под углом а = 45° пучок лучей белого света. При какой наименьшей толщине пленки свет с длиной волны X = 0,55 мкм окажется максимально усиленным в результате интерференции ? Наблюдение ведется в отраженном свете.
96. На мыльную пленку (n = 1,33), находящуюся в воздухе, падает под углом а = 30° пучок лучей белого света. При какой наименьшей толщине пленки свет с длиной волны X = 0,5 мкм окажется максимально ослабленным в результате интерференции ? Наблюдение ведется в отраженном свете.
97. Во сколько раз увеличится расстояние между соседними интерференционными полосами на экране в опыте Юнга, если длину волны излучения изменили с 500 нм до 650 нм ?
98. На мыльную пленку (n = 1,33), находящуюся в воздухе, падает под углом а = 60° пучок лучей белого света. При какой наименьшей толщине пленки свет с длиной волны X = 0,55 мкм окажется максимально усиленным в результате интерференции ? Наблюдение ведется в проходящем свете.

99. Расстояние между двумя когерентными источниками света (X = 0,5мкм) равно 0,1 мм. Расстояние между интерференционными максимумами в средней части интерференционной картины равно 1 см. Определить расстояние от источников до экрана.
100. В воде интерферируют когерентные световые волны с частотой
5 • 1014 Гц. Усиление или ослабление света будет наблюдаться в точке наложения, если геометрическая разность хода лучей в ней равна 1,8 мкм ? Показатель преломления воды n = 1,33.
101. Дифракция наблюдается на расстоянии 1 м от точечного источника монохроматического света (X = 0,5 мкм). Посередине между источником света и экраном находится диафрагма с круглым отверстием. Определить радиус отверстия, при котором центр дифракционных колец на экране является наиболее темным.
102. Сферическая волна, распространяющаяся из точечного монохроматического источника света (X = 0,6 мкм ), встречает на своем пути экран с круглым отверстием радиусом 0,4 мм. Расстояние от источника до экрана равно 1 м. Определить наибольшее расстояние от отверстия до точки экрана, лежащей на линии, соединяющей источник с центром отверстия, где наблюдается максимум освещенности.
103.  Плоская световая волна (X = 0,7 мкм) падает нормально на диафрагму с круглым отверстием радиусом 1,4 мм. Определить расстояния от диафрагмы до двух наиболее удаленных от нее точек, в которых наблюдаются минимумы интенсивности.
104. На щель шириной 0,1 мм падает нормально монохроматический свет с длиной волны X = 0,5 мкм. Дифракционная картина наблюдается на экране, расположенном параллельно щели. Определить расстояние от щели до экрана, если ширина центрального дифракционного максимума равна 1 см.
105. На щель шириной 2 мкм падает нормально параллельный пучок монохроматического света (X = 589 нм). Под какими углами будут наблюдаться дифракционные минимумы света?
106. На щель шириной 0,1 мм падает нормально монохроматический свет (X = 0,5 мкм). Что будет наблюдаться на экране (максимум или минимум интенсивности), если угол дифракции равен: 1) 17'; 2) 43'.
107. На дифракционную решетку, содержащую 400 штрихов на 1 мм, падает нормально монохроматический свет (X = 0,6 мкм). Найти общее число дифракционных максимумов, которые дает эта решетка. Определить угол дифракции, соответствующий последнему максимуму.
108. На дифракционную решетку нормально падает пучок света. Натриевая линия ( Xj= 589 нм) наблюдается в спектре первого порядка при угле дифракции ф1 = 17 °8'. Некоторая линия имеет в спектре второго порядка угол дифракции ф 2 = 24° 12'. Найти длину волны X 2 этой линии и число штрихов на единицу длины решетки.
109. Постоянная дифракционной решетки d = 2 мкм. Какую разность длин волн AX может разрешить эта решетка в области желтых лучей (X = 600 нм) в спектре второго порядка? Длина решетки - 2,5 см.

110. Дифракционная картина получена с помощью дифракционной решетки длиной 1,5 см и периодом d = 5 мкм. Определить, в спектре какого наименьшего порядка этой картины получатся раздельные изображения двух спектральных линий с разностью длин волн ДХ = 0,1 нм, если линии лежат в крайней красной части спектра (X « 760 нм).
111. Угол между главными плоскостями поляризатора и анализатора составляет 30°. Определить изменение интенсивности прошедшего через них света, если угол между главными плоскостями стал равен 45°.
112. Интенсивность естественного света, прошедшего через поляризатор и анализатор, уменьшилась в 8 раз. Пренебрегая поглощением света, определить угол между главными плоскостями поляризатора и анализатора.
113. Определить, во сколько раз ослабится интенсивность естественного света, прошедшего через два поляризатора, расположенные так, что угол между их главными плоскостями равен 60°.
114. Определить, во сколько раз уменьшится интенсивность естественного света, прошедшего через два поляризатора, главные плоскости которых образуют угол 45° .
115. Естественный свет проходит через поляризатор и анализатор, угол между главными плоскостями которых равен а. Определить угол а, если интенсивность света, вышедшего из анализатора, равна 12% интенсивности света, падающего на поляризатор.
116. Во сколько раз изменится интенсивность света, проходящего через два поляризатора, если увеличить угол между их главными плоскостями с 30° до 60° . Потерями света пренебречь.
117. Анализатор в 2 раза уменьшает интенсивность света, приходящего к нему от поляризатора. Определить угол между плоскостями пропускания поляризатора и анализатора. Потерями интенсивности света в анализаторе пренебречь.
118. Угол между плоскостями пропускания поляризатора и анализатора равен 45° . Во сколько раз уменьшится интенсивность света, выходящего из анализатора, если угол увеличить до 60° ?
119. Естественный свет проходит через поляризатор и анализатор, поставленные так, что угол между их главными плоскостями равен а. При этом интенсивность луча, вышедшего из анализатора, равна 9% интенсивности естественного света, падающего на поляризатор. Найти угол а.
120. Естественный свет падает на систему из трех последовательно расположенных одинаковых поляризаторов, причем главная плоскость среднего поляризатора составляет угол 60° с главными плоскостями двух других. Во сколько раз уменьшится интенсивность света после прохождения этой системы?

Физика для заочников

КОНТРОЛЬНАЯ РАБОТА №1

 

Номера задач

0

100

110

120

130

140

150

160

170

180

190

1

101

111

121

131

141

151

161

171

181

191

2

102

112

122

132

142

152

162

172

182

192

3

103

113

123

133

143

153

163

173

183

193

4

104

114

124

134

144

154

164

174

184

194

5

105

115

125

135

145

155

165

175

185

195

6

106

116

126

136

146

156

166

176

186

196

7

107

117

127

137

147

157

167

177

187

197

8

108

118

128

138

148

158

168

178

188

198

9

109

119

129

139

149

159

169

179

189

199

 

100. Материальная точка движется по окружности с постоянной угловой скоростью рад/с. Во сколько раз путь DS, пройденный точкой  за время t = 4 с, будет больше модуля ее перемещения D?

         101. Материальная  точка движется прямолинейно с ускорением а = 5 м/с2. Определить, на сколько путь, пройденный точкой в n-.ю секунду, будет больше пути, пройденного в предыдущую секунду? Принять v0 = 0.

         102. Точка движется по окружности радиусом R = 20 см c постоянным ускорением аt = 5 см/с2. Через сколько времени после начала движения нормальное ускорение аn точки будет: равно тангенциальному; 2) вдвое больше тангенциального?

         103. Точка движется по окружности радиусом R = 30cм c постоянным угловым ускорением e. Определить тангенциальное ускорение аt точки. Если известно, что за время t = 4 c она совершила три оборота и в конце третьего оборота ее нормальное ускорение аn = 2,7 м/с2. Рассмотреть два случая: e >0, e<0.

104. Линейная скорость точек на окружности вращающегося диска v1 =3 м/с. Точки, расположенные на 10 см ближе к оси, имеют линейную скорость v2 =2 м/с. Сколько оборотов в секунду делает диск?

105. Первую половину пути тело двигалось со скоростью v1 =2 м/с, вторую половину пути со скоростью V2 =8 м/с. Определить среднюю скорость движения.

         106. Точка движется по окружности радиусом R = 10 см с постоянным тангенциальным ускорением аt. Найти нормальное ускорение аn точки через t = 20 с после начала движения. Если известно, что к концу пятого оборота после начала движения линейная скорость точки равна v = 10 см/с.

         107. Точка движется по прямой согласо уравнению:  x = At + Bt3, где А = 6 м/с, В = -0,125 м/с3. Определить среднюю путевую скорость <v> точки в интервале времени от t1 = 2 c до t2 = 6 c.

         108. Движение точки по прямой задано уравнением  x =At +Bt2, где А = 2 м/с, В = (-0,5)м/с2. Определить среднюю скорость движения точки в интервале времени от t1 =1c  до t2 =3c.

109. Из одного и того же места начали равноускоренно двигаться в одном направлении две точки, причем вторая начала свое  движение через 2 с  после первой. Первая точка  двигалась  с начальной  скоростью v1 = 1 м/с и ускорением a1=2 м/с2, вторая с начальной скоростью v2=10 м/с и ускорением а2=1 м/с2. Когда и где вторая точка догонит первую?

         110. Мяч бросили со скоростью 10 м/с под углом 400 к горизонту. Найти: на какую высоту поднимется мяч, на каком расстоянии от места бросания мяч упадет на землю, cколько времени он будет в движении?

         111. Камень брошен в горизонтальном направлении. Через 0,5 с после начала движения численное значение скорости камня стало в 1,5 раза больше его начальной скорости. Найти начальную скорость камня. Сопротивление воздуха не учитывать.

         112. С вышки бросили камень в горизонтальном направлении. Через 2 с камень упал на землю на расстоянии S = 40 м  от основания вышки, Определить начальную vо и конечную v скорости камня.

113. Пуля выпущена с начальной скоростью vо =200 м/с под углом a =60 о к плоскости горизонта. Определить наибольшую высоту H подъема, дальность S полета. Сопротивлением воздуха пренебречь.

         114. Тело брошено под углом a = 300 к горизонту со скоростью v0 = 30 м/с. Каковы будут нормальное an и аt ускорения тела через время t = 1 с после начала движения?

         115. Тело брошено под углом  φ =300 к горизонту. Найти тангенциальное  аτ и нормальное  аn ускорения в начальный момент движения.

         116. Тело брошено со скоростью v0 под углом к горизонту. Продолжительность полета 2,2 с. Найти наибольшую высоту поднятия этого тела.

117. Камень брошен горизонтально со скоростью v0 = 15 м/с. Найти нормальное и тангенциальное ускорение камня через 1 с после начала движения.

         118. Камень брошен вертикально вверх с начальной скоростью vо = 20 м/с. Через сколько секунд камень будет находиться на высоте h =15 м? Какова будет скорость камня на этой высоте? Сопротивлением воздуха пренебречь.

119. С башни высотой H =25 м горизонтально брошен камень со скоростью vо =15 м/с. Сколько времени камень будет в движении? На каком расстоянии S от основания башни он упадет на землю? С какой скоростью он упадет на землю? Какой угол составит траектория камня с горизонтом в точке его падения на землю? Сопротивлением воздуха пренебречь.

120. К пружинным весам подвешен блок. Через блок перекинули шнур, к концам которого привязали грузы массой m1 = 1,5 кг и m2 = 3 кг. Каково будет показание весов во время движения грузов? Массой блока и шнура пренебречь.

121. На барабан радиусом R =0,5 м намотан шнур, к концу которого привязан груз массой m =10 кг. Найти момент инерции барабана, если известно, что груз опускается с ускорением а =2,04 м/с2 ?

122. На концах нити, переброшенной через блок, висят на одинаковой высоте две гирьки массой по 96 г каждая. Если на одну из них положить перегрузок, вся система придет в движение и через 3 с расстояние между гирьками станет равным 1,8 м. Определить: вес перегрузка, силу натяжения нити, силу давления перегрузка на гирьку и силу давления на ось блока.

123. К концам нити, перекинутой через блок, укрепленный на динамометре, подвешены два груза массой 0,1 и 0,2 кг. Определить ускорение грузов, натяжение нити и показание динамометра.

124. Грузик, привязанный к нити длиной l = 1 м, описывает окружность в горизонтальной плоскости. Определить период Т обращения, если нить отклонена на угол j = 600 от вертикали.

125. К краю стола прикреплен блок. Через блок перекинута невесомая и нерастяжимая нить, к концам которой прикреплены грузы. Один груз движется по поверхности стола, а другой вдоль вертикали вниз. Определить коэффициент трения между поверхностями груза и стола, если масса каждого груза и блока  одинаковы  и  грузы  движутся  с ускорением а = 2,6 м/с2. Трением в блоке пренебречь.

126. Блок, имеющий форму диска массой m = 0,4 кг вращается под действием силы натяжения нити, к концам которой подвешены грузы m1 = 0,3 кг и m2 = 0,7 кг. Определить силы натяжения Т1 и Т2 нити по обе стороны блока.

127. Нить с привязанными к ее концам грузами m1 = 50 г и m2 = 60 г перекинута через блок диаметром D = 4см. Определить момент инерции  блока I , если под действием силы тяжести грузов он получил угловое ускорение e = 1,5 рад/с2. Трением и проскальзыванием нити по блоку пренебречь.

128. Тонкий стержень длиной l = 50 см и массой m = 400 г вращается с угловым ускорением e = 3 рад/с2 около оси, проходящей через середину стержня перпендикулярно к его длине. Определить вращающий момент М.

129. По ободу шкива, насаженного на общую ось с маховым колесом, намотана нить, к концу которой подвешен груз массой m = 1 кг. На какое расстояние h должен опуститься груз, чтобы колесо со шкивом получило частоту вращения n = 60 об/мин? Момент инерции колеса со шкивом I = 0, 42 кг×м2, радиус шкива R = 10 см.

         130. Орудие, жестко закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом a = 300 к линии горизонта. Определить скорость u2 отката платформы, если снаряд вылетает со скоростью u1 = 480 м/с. Масса платформы с орудием и снарядами m2 = 18 т, масса снаряда m1 = 60 кг.

         131. Снаряд массой m = 10 кг, обладал скоростью v = 200 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая часть массой m1 = 3 кг, получила скорость u1 = 400 м/с в прежнем направлении. Найти скорость u2 второй, большей части, после разрыва.

         132. С тележки, свободно движущейся по горизонтальному пути со скоростью v1 = 3 м/с, в сторону, противоположную движению тележки спрыгнул человек, после чего скорость тележки изменилась и стала равной u1 = 4 м/с. Определить горизонтальную составляющую скорости u2 человека при прыжке относительно тележки. Масса тележки m1 = 210 кг, масса человека m2 = 70 кг.

         133. На полу стоит тележка в виде длинной доски, снабженной легкими колесами. На одном конце стоит человек. Масса его m1 = 60 кг, масса доски m2 = 20 кг. С какой скоростью (относительно пола) будет двигаться тележка, если человек пойдет вдоль нее со скоростью (относительно доски) v = 1 м/с? Массой колес и трением пренебречь.

         134. Человек, массой m1= 70 кг, бегущий со скоростью v1 = 9 км/час, догоняет тележку массой m2 = 190 кг, движущуюся со скоростью v2  = 3,6 км/час, и вскакивает на нее. С какой скоростью будет двигаться тележка с человеком?

         135. На сколько переместится относительно берега лодка длиной l = 3,5 м и массой m1 = 200 кг, если стоящий на корме человек массой m2 = 80 кг переместился на нос лодки? Считать лодку расположенной перпендикулярно берегу.

         136. Определить импульс, полученный стенкой при ударе о нее шарика массой m = 300 г, если шарик двигался со скоростью v = 8 м/с под углом a = 600  к плоскости стенки. Удар считать упругим.

         137. С высоты h1 = 2 м на стальную плиту свободно падает шарик массой m = 200 г и подпрыгивает на высоту h2 = 0,5 м. Определить импульс, полученный плитой при ударе.

         138. Человек и тележка движутся навстречу друг другу, причем масса человека в два раза больше массы тележки. Скорость человека 2 м/с, а тележки 1 м/с. Человек вскакивает на тележку и остается на ней. Какова скорость человека с тележкой?

139. Снаряд массой  m =10 кг обладал скоростью v = 200 м/с в верхней точке траектории. В этой точке он разорвался на две части. Меньшая часть массой m1 =3 кг получила скорость v1 = 400 м/с в прежнем направлении под углом φ =60о  к  горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?

140. Тело массой m1 =2 кг движется навстречу второму телу, масса которого m2 =1,5 кг, и неупруго сталкивается с ним. Скорость тел непосредственно перед столкновением была равна соответственно v1 = 1 м/с и  V2 =2 м/с. Сколько времени будут двигаться эти тела после столкновения, если коэффициент трения равен k=0,05 ?

141. На горизонтальном столе лежит брусок массой 5 кг. В брусок попадает пуля массой 10 г, летящая горизонтально со скоростью 500 м/с. Какое расстояние пройдет брусок по столу до полной остановки? Коэффициент трения бруска о стол  k=0,05.

142. Вычислить работу, совершаемую при равноускоренном подъеме груза массой 100 кг на высоту 4 м за время  2 с.

143. Под действием груза в 20 Н, подвешенного к пружине, пружина растянулась на 10 см. Определить потенциальную энергию пружины.

         144. Если на верхний конец вертикально расположенной спиральной пружины положить груз, то пружина сжимается на Dl = 3 мм. На сколько сожмет пружину тот же груз, упавший на ее конец с высоты h = 8 см?

         145. Конькобежец, стоя на льду, бросил вперед гирю массой m1= 5 кг и вследствие отдачи покатился назад со скоростью u2 = 1 м/с. Масса конькобежца m2 = 60 кг. Определить работу, совершенную конькобежцем при бросании гири.

         146. Cплошной однородный диск катится по горизонтальной плоскости со скоростью 10 м/с. Какое расстояние пройдет диск до остановки, если его предоставить самому себе? Коэффициент сопротивления движению диска равен 0,02.

         147. Сплошной цилиндр скатился с наклонной плоскости высотой 15 см. Какую. скорость поступательного движения будет иметь цилиндр в конце наклонной плоскости?

148. В деревянный шар массой m1 = 8 кг, подвешенный на нити длиной 1,8 м, попадает горизонтально летящая пуля массой m2 = 4 г. С какой скоростью летела пуля, если нить с шаром и застрявшей в ней пулей отклонилась от вертикали на угол a = 30? Размером шара пренебречь. Удар прямой, центральный.

149. Атом распадается на две части массами m1 = 1,6 10-25 кг и m2 =

2,3 10-25 кг. Определить кинетические энергии Т1 и Т2 частей атома, если их общая кинетическая энергия Т = 2,2 10-11 Дж. Кинетической энергией и импульсом атома до распада пренебречь.

150. Горизонтальная платформа массой 200 кг вращается вокруг горизонтальной оси, проходящей через центр платформы, делая 10 об/с. Человек масcой 60 кг стоит на расстоянии R от центра платформы. Сколько оборотов в секунду будет делать платформа, если расстояние человека от центра платформы станет равным R/2? Платформа - однородный диск радиусом R м, человек - точечная масса.

151. На краю горизонтальной неподвижной платформы, имеющей форму диска радиусом  2 м, стоит человек. Масса платформы 200 кг,  масса человека 80 кг. Платформа может вращаться вокруг вертикальной оси, проходящей через ее центр. Пренебрегая трением, найти, с какой угловой скоростью будет вращаться платформа, если человек будет идти вдоль ее края со скоростью 2 м/с относительно платформы.

152. В центре скамьи Жуковского стоит человек и держит в руках металлический стержень длиной l = 1,5 м и массой 8 кг вертикально по оси вращения. При этом скамейка с человеком вращается с частотой n1  = 4 об/с. Момент инерции человека и скамейки I = 6 кг м2. Сколько оборотов в секунду будет делать скамья с человеком, если человек повернет стержень в горизонтальное положение, причем центр масс стержня находится на расстоянии l/3  от оси.

153. Платформа в виде диска радиусом 1 м вращается по инерции с частотой 6 об/мин. На краю платформы стоит человек, масса которого 80 кг. С какой частотой будет вращаться платформа, если человек перейдет в её центр? Момент  инерции платформы 120 кг∙м2. Момент инерции человека рассчитывать как для материальной точки.

154. Деревянный стержень массой m = 1 кг и длиной l  = 0,4 м может вращаться около оси, проходящей через его середину перпендикулярно стержню. В конец стержня попадает пуля массой 0,01 кг, летящая перпендикулярно стержню со скоростью 200 м/с. Сколько оборотов в секунду будет делать стержень, если пуля застрянет в нем?

155. На скамье Жуковского, вращающейся около вертикальной оси с частотой 2 об/с, стоит человек и держит на вытянутых руках две одинаковые гири. Расстояние между гирями равно 1,5 м. Когда человек опускает руки, расстояние между гирями становится равным 0,4 м и частота вращения скамьи 3 об/с. Момент инерции человека и скамьи 8 кг м2. Трением пренебречь. Определить массу гири.

156. Платформа в виде диска диаметром D = 3 м и массой m1 = 180 кг может вращаться вокруг вертикальной оси. С какой угловой скоростью w1 будет вращаться эта платформа, если по ее краю пойдет человек массой m2 = 70 кг со скоростью v = 1,8 м/с относительно платформы?

157. Горизонтальная платформа массой m =100 кг вращается вокруг вертикальной оси, проходящей через центр платформы, с частотой 

n1 =10 об/мин. Человек массой m =60 кг стоит при этом на краю платформы. С какой частотой n2 начнет вращаться платформа, если человек перейдет от края платформы к её центру. Считать платформу однородным диском, а человека точечной массой.

158.Однородный cтержень длиной l = 1 м может свободно вращаться вокруг горизонтальной оси, проходящей через один из его концов. В другой конец абсолютно неупруго ударяет пуля массой m = 7 г, летящая перпендикулярно стержню и его оси. Определить массу М стержня, если в результате попадания пули он отклонился на угол a = 600. Принять скорость пули v = 360 м/с. Масса стержня много больше массы пули.

159. В центре скамьи Жуковского стоит человек и держит в руках металлический стержень длиной l = 1,5 м и массой 8 кг вертикально оси вращения. При этом скамейка с человеком вращается с частотой n = 4 об/с. Момент инерции человека скамейки I = 6 кг м2. Сколько оборотов в секунду будет делать скамья с человеком, если человек повернет стержень в горизонтальное положение, причем человек держит стержень за конец.?

160. На каком расстоянии от поверхности Земли ускорение свободного падения равно 1 м/c2?

161. Сравнить ускорение силы тяжести на поверхности Луны с ускорением силы тяжести на поверхности Земли.

162. Какова масса Земли, если известно, что Луна в течение года совершает 13 обращений вокруг Земли и расстояние от Земли до Луны равно 3,84×108м?

163. С поверхности Земли вертикально вверх пущена ракета со скоростью v = 5 км/с. На какую высоту она поднимется?

164. По круговой орбите вокруг Земли обращается спутник с периодом Т = 90 мин. Определить высоту спутника. Ускорение свободного падения g0 у поверхности Земли и ее радиус считать известными.

165. Какую скорость необходимо сообщить спутнику, чтобы вывести его на круговую орбиту на расстоянии 400 км от поверхности Земли?

166. Спутник обращается вокруг Земли по круговой орбите на высоте h = 520 км. Определить период обращения спутника. Ускорение свободного падения g0 у поверхности Земли и ее радиус считать известными.

167. Определить линейную и угловую скорости спутника Земли, обращающегося по круговой орбите на высоте h = 1000 км. Ускорение свободного падения g0 у поверхности Земли и ее радиус считать известными.

168. Во сколько раз средняя плотность земного вещества отличается от средней плотности лунного? Принять радиус Земли Rз в 390 раз больше радиуса Луны Rл и вес тела на Луне в 6 раз меньше веса тела на Земле.

169. Стационарный искусственный спутник движется по окружности в плоскости земного экватора, оставаясь все время над одной и той же точкой земной поверхности. Определить угловую скорость w спутника и радиус R  его орбиты.

170. Однородный стержень совершает малые колебания в вертикальной плоскости около горизонтальной оси, проходящей через его верхний конец. Длина стержня l = 0,5 м. Определить период колебаний стержня и его приведенную длину.

171. Тонкий обруч, повешенный на гвоздь, вбитый горизонтально в стену, колеблется в плоскости, параллельной стене. Радиус R обруча равен 30 см. Вычислить период колебаний Т обруча.

172. Определить частоту гармонических колебаний диска радиусом R = 20 см, около горизонтальной оси, проходящей через середину радиуса диска перпендикулярно его плоскости.

173. Определить момент инерции тонкого стержня длиной 30 см и массой 100 г относительно оси, перпендикулярной стержню и проходящей через его конец.

174. Определить момент инерции тонкого стержня длиной 30 см  и массой 100 г относительно оси, перпендикулярной стержню и проходящей через точку , отстоящую от конца стержня на одну треть его длины.

175. Однородный стержень длиной 0,5 м совершает малые колебания около горизонтальной оси, проходящей на расстоянии 10 см от его верхнего конца. Определить период колебаний стержня.

176. Длина тонкого прямого стержня 60 см, масса 100 г. Определить момент инерции стержня относительно оси, перпендикулярной к его длине и проходящей через точку стержня, удаленную на 20 см от одного из его концов.

177. Матеметический маятник длиной l = 1 м установлен в лифте. Лифт поднимается с ускорением a = 2,5 м/с2. Определить период T колебаний маятника.

178. Из однородного диска радиусом R сделали физический маятник. Вначале ось проходит через образующую диска, потом – на расстоянии R/2 от центра диска. Определить отношение периодов колебаний.

179. Физический маятник представляет собой тонкий однородный стержень массой  m  c укрепленным  в его середине маленьким шариком масcой m. Маятник совершает колебания около горизонтальной оси, проходящей через конец стержня. Определить период гармонических колебаний Т маятника. Длина l стержня равна 1 м., шарик – материальная точка.

180. Точка совершает гармонические колебания, уравнение которых x = Asinwt, где А = 5 см, w = 2 с-1. В момент времени, когда точка обладала потенциальной энергией Е = 0,1 мДж, на нее действует возвращающая сила F = 5 мН. Найти этот момент времени.

181. Материальная точка участвует одновременно в двух взаимно перпендикулярных гармонических колебаниях, уравнения которых: х = сospt см и y = 2cos(pt/2) см. Определить траекторию точки. Построить траекторию с соблюдением масштаба.

182. Шарик массой m = 60 г колеблется с периодом Т = 2 с. В начальный момент времени смещение шарика х0 = 4 см и он обладал энергией Е = 0,02 Дж. Записать уравнение гармонического колебания шарика и закон изменения возвращающей силы с течением времени.

183. Материальная точка массой 10 г совершает гармонические колебания, уравнение которых имеет вид  х = 0,2 sin 8πt м. Найти возвращающую силу в момент времени t = 0,1 с, а также полную энергию точки.

184. Амплитуда затухающих колебаний маятника за время t = 5 мин уменьшилась в два раза. За какое время t2, считая от начального момента, амплитуда уменьшится в восемь раз?

185. Складываются два колебания одинакового направления и периода: x1 = A1sinw1t  и x2 = A2sinw2 (t +t) , где А1 и А2 = 3 см, w 1 = w 2 = p с-1, t = 0,5 с. Определить амплитуду А и начальную фазу j0 результирующего колебания. Написать его уравнение. Построить векторную диаграмму для момента времени t = 0.

186. На гладком горизонтальном столе лежит шар массой М = 200 г, прикрепленный к горизонтально расположенной легкой пружине с жесткостью к = 500 Н/м. В шар попадает пуля массой m = 10 г, летящая со скоростью v = 300 м/с, и застревает в нем. Пренебрегая перемещением шара во время удара и сопротивлением воздуха, определить амплитуду А и период Т колебаний шара.

187. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, уравнения которых: x1 = Asinw1t  и x2 = Acosw2 t, где А1= 8 см,  А2 = 4 см, w 1 = w 2 = 2 с-1. Написать уравнение траектории и построить ее. Показать направление движения точки.

188. Точка совершает одновременно два колебания, происходящие по взаимно перпендикулярным направлениям и выражаемых уравнениями: x = A1sinw1t и y = A2cosw2t, где А1 = 2 см, w1 = 1 с-1, А2 = 2 см, w2 = 2 с-1. Найти уравнение траектории, построить ее с соблюдением масштаба и указать направление движения.

189. Точка участвует одновременно в двух взаимно перпендикулярных колебаниях, выражаемых уравнениями: x = 2cosωt см и  y = 3sin0,5ωt см. Найти уравнение траектории точки и построить ее.

190. От источника колебаний распространяется волна вдоль прямой линии. Амплитуда А колебаний равна 10 см. Как велико смещение  точки, удаленной от источника на l = 3/4 l, в момент, когда от начала колебаний прошло время t = 0,9Т?

191. Уравнение незатухающих колебаний дано в виде x = 4sin600pt см. Найти смещение от положения равновесия точки, находящейся на расстоянии 75 см от источника колебаний через 0,01 с после начала колебаний. Скорость распространения колебаний 300 м/с.

192. Определить скорость v распространения волн в упругой среде, если разность фаз Dj двух точек, отстоящих друг от друга на Dl = 15 см, равна p/2. Частота колебаний n = 25 Гц.

            193. Две точки находятся на прямой, вдоль которой распространяются волны со скоростью v = 10 м/с. Период колебаний Т = 0,2 с, расстояние между точками Dl = 1 м. Найти разность фаз Dj колебаний в этих точках.

194. Уравнение незатухающих колебаний дано в виде x = sin2,5pt см. Найти смещение от положения равновесия, скорость и ускорение точки, находящейся на расстоянии 20 м от источника колебаний, для момента t = 1 c после начала колебаний. Скорость распространения колебаний 100 м/с.

         195. Найти смещение от положения равновесия точки, отстоящей от источника колебаний на расстоянии l = l/12 для момента t = T/6. Амплитуда колебаний А = 0,05 м.

         196. Смещение от положения равновесия точки, находящейся на расстоянии 4 см от источника колебаний, в момент t = T/6  равно половине амплитуды. Найти длину бегущей волны.

197. Какую разность фаз будут иметь колебания двух точек, находящихся на расстоянии 10 и 16 м от источника колебаний? Период колебаний 0,04 с, скорость распространения колебаний 300 м/с .

         198. Волна  распространяется  в  упругой  среде  со  скоростью  v = 100 м/с. Наименьшее расстояние Dl между точками среды, фазы колебаний которых противоположны, равно 1 м. Определить частоту n колебаний.

199. Уравнение незатухающих колебаний дано в виде: x = 10sin0,5pt. Найти 1) уравнение волны, если скорость  распространения  колебаний  300 м/с. 2) написать уравнение колебаний для точки, отстоящей от источника колебаний  на 600 м. 3) написать уравнение колебаний для точек волны в момент t = 4 с от начала колебаний.

RSS-материал